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Deep learning needs extreme hardware specialization, and hardware 
specialization needs new datatypes.
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See tvm.ai for more info!
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Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3, )) 
Y = tvm.placeholder(shape=(3, ))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered_function = tvm.lower(schedule, [X, Y, Z])
built_program = tvm.build(lowered_function)

x = tvm.nd.array(np.random.rand(3).astype("float32"))  
y = tvm.nd.array(np.random.rand(3).astype("float32"))
z = tvm.nd.empty((3, ))

built_program(x, y, z)

x: [0.5727742  0.16838571 0.9647888 ] 
y: [0.75005066 0.12305858 0.9467064 ] 
z: [1.3228248 0.2914443 1.9114952]
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Double

Single

Half

Numerical datatypes: how the hardware represents real numbers

In the past, this generally meant IEEE 754 floating point:

…and others!
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Why do we need new datatypes?

Because IEEE floats…

• take up too much space

• have poor dynamic range 

• require overly-complex hardware

• create reproducibility issues  



What do new datatypes look like?

…
+ 
-

… …



What do new datatypes look like?

bfloat16

Posit, n = 16, es = 2 …
+ 
-

… …Flexpoint



bfloat16

Single

bfloat16

FractionExponent+ 
-

Half



bfloat16

Single

bfloat16

FractionExponent+ 
-

Greater dynamic range is more useful for deep learning workloads
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Posits use a variable-size regime field to add dynamic scaling: regime determines 
another multiplicative factor on the fraction

Posits can have large dynamic range even down to 8 bits

See John Gustafson’s “Beating Floating Point at its Own Game”
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Flexpoint

Intel’s format for their Nervana processor

Block floating point: a group of numbers share an exponent

Plus, they split the fields between host and device!

See Köster et. al., “An Adaptive Numerical Format for Efficient Training of Deep Neural Networks”
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Deepfloat
Taking inspiration from posits, but with many improvements

E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with IEEE 
floats:

See "Rethinking Floating Point for Deep Learning"

http://learningsys.org/nips18/assets/papers/38CameraReadySubmissiondeepfloat_nips_2018.pdf
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How Datatype Research Works

float a =  
float b = 
f(a,b) 
...

To prototype a hardware datatype, 
researchers will emulate the datatype 
in software by building a software 
library

To test their datatype, they will hack 
apart a benchmark or application and 
shove their software library in

Can we do better? Can we use 
TVM to compile workloads 
with new datatypes?
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myType a =  myType b = f(a,b) ...

???
Currently, TVM does not know how to 
interpret programs with arbitrary 
datatypes.

Luckily, TVM is extensible!
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Supporting Datatype Research With TVM

1. User makes or finds a datatype library

2. User writes a program using their datatypes directly

3. User points TVM to the important functions (+, ∗) in the library

4. User gives TVM other information e.g. datatype size

5. TVM compiles programs, handling the custom datatype by compiling calls into 
the provided library
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Limitations of this Approach

Currently, we’re only supporting software implementations of datatypes.

Compiling for hardware implementations of the datatype is out of scope for 
the moment, but is planned.
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Datatype Registry

User registers their datatype:

tvm.datatype.register("bfloat", 129)

Where 129 is a manually chosen code for the type
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Datatype Usage

Then, in the code, we can give tensors the custom datatype:

dtype=“custom[bfloat]16"

Here, “16” is how we tell TVM the size of the datatype.



Operation Registry



Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:



Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(



Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
        lower_func, 



Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
        lower_func, 
        "Add", “llvm", “bfloat”)



Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
        lower_func, 
        "Add", “llvm", “bfloat”)

In the common case, we will use:



Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
        lower_func, 
        "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(



Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
        lower_func, 
        "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
        tvm.datatype.create_lower_func("BFloat16Add"), 



Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
        lower_func, 
        "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
        tvm.datatype.create_lower_func("BFloat16Add"), 
        "Add", “llvm", “bfloat”)



Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
        lower_func, 
        "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
        tvm.datatype.create_lower_func("BFloat16Add"), 
        "Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:



Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
        lower_func, 
        "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
        tvm.datatype.create_lower_func("BFloat16Add"), 
        "Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:

Add

x
bfloat

y
bfloat



Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
        lower_func, 
        "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
        tvm.datatype.create_lower_func("BFloat16Add"), 
        "Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:

Add

x
bfloat

y
bfloat



Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
        lower_func, 
        "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
        tvm.datatype.create_lower_func("BFloat16Add"), 
        "Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:

Add

x
bfloat

y
bfloat

Call
BFloat16Add

x
uint16

y
uint16
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Future Work

• Short term: evaluating real deep learning models with modern datatypes

• Long term: supporting custom datatype hardware



Thank You!


