
Bring Your Own Datatypes into
TVM
Gus Smith

Advisor: Luis Ceze
University of Washington

An Analysis of Deep Neural Network Models for Practical Applications

…

https://arxiv.org/pdf/1605.07678.pdf

An Analysis of Deep Neural Network Models for Practical Applications

…

https://arxiv.org/pdf/1605.07678.pdf

An Analysis of Deep Neural Network Models for Practical Applications

…

https://arxiv.org/pdf/1605.07678.pdf

An Analysis of Deep Neural Network Models for Practical Applications

bfloat16

…

https://arxiv.org/pdf/1605.07678.pdf

An Analysis of Deep Neural Network Models for Practical Applications

bfloat16

…

…Flexpoint

https://arxiv.org/pdf/1605.07678.pdf

Deep learning needs extreme hardware specialization, and hardware
specialization needs new datatypes.

Background

Background

What is TVM?

Background

What is TVM?

What do we mean by datatypes?

Background

What is TVM?

What do we mean by datatypes?

Why do we need new datatypes?

Background

What is TVM?

What do we mean by datatypes?

Why do we need new datatypes?

What do new datatypes look like?

What is TVM?

What is TVM?

An extensible, optimizing compiler for deep learning.

http://tvm.ai

What is TVM?

An extensible, optimizing compiler for deep learning.

See tvm.ai for more info!

http://tvm.ai

The TVM Stack

The TVM Stack

The TVM Stack

High-Level Differentiable IR

Tensor Expression IR

The TVM Stack

Optimization

High-Level Differentiable IR

Tensor Expression IR

The TVM Stack

Optimization

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

The TVM Stack

Optimization

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

Vector Add in TVM

Vector Add in TVM

import tvm 
import topi 
import numpy as np

Vector Add in TVM

import tvm 
import topi 
import numpy as np

Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3,)) 
Y = tvm.placeholder(shape=(3,))

Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3,)) 
Y = tvm.placeholder(shape=(3,))
Z = topi.add(X, Y)

Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3,)) 
Y = tvm.placeholder(shape=(3,))
Z = topi.add(X, Y)

Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3,)) 
Y = tvm.placeholder(shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])

Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3,)) 
Y = tvm.placeholder(shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered_function = tvm.lower(schedule, [X, Y, Z])

Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3,)) 
Y = tvm.placeholder(shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered_function = tvm.lower(schedule, [X, Y, Z])
built_program = tvm.build(lowered_function)

Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3,)) 
Y = tvm.placeholder(shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered_function = tvm.lower(schedule, [X, Y, Z])
built_program = tvm.build(lowered_function)

Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3,)) 
Y = tvm.placeholder(shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered_function = tvm.lower(schedule, [X, Y, Z])
built_program = tvm.build(lowered_function)

x = tvm.nd.array(np.random.rand(3).astype("float32"))  
y = tvm.nd.array(np.random.rand(3).astype("float32"))

Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3,)) 
Y = tvm.placeholder(shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered_function = tvm.lower(schedule, [X, Y, Z])
built_program = tvm.build(lowered_function)

x = tvm.nd.array(np.random.rand(3).astype("float32"))  
y = tvm.nd.array(np.random.rand(3).astype("float32"))
z = tvm.nd.empty((3,))

Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3,)) 
Y = tvm.placeholder(shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered_function = tvm.lower(schedule, [X, Y, Z])
built_program = tvm.build(lowered_function)

x = tvm.nd.array(np.random.rand(3).astype("float32"))  
y = tvm.nd.array(np.random.rand(3).astype("float32"))
z = tvm.nd.empty((3,))

Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3,)) 
Y = tvm.placeholder(shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered_function = tvm.lower(schedule, [X, Y, Z])
built_program = tvm.build(lowered_function)

x = tvm.nd.array(np.random.rand(3).astype("float32"))  
y = tvm.nd.array(np.random.rand(3).astype("float32"))
z = tvm.nd.empty((3,))

built_program(x, y, z)

Vector Add in TVM

import tvm 
import topi 
import numpy as np

X = tvm.placeholder(shape=(3,)) 
Y = tvm.placeholder(shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered_function = tvm.lower(schedule, [X, Y, Z])
built_program = tvm.build(lowered_function)

x = tvm.nd.array(np.random.rand(3).astype("float32"))  
y = tvm.nd.array(np.random.rand(3).astype("float32"))
z = tvm.nd.empty((3,))

built_program(x, y, z)

x: [0.5727742 0.16838571 0.9647888]
y: [0.75005066 0.12305858 0.9467064]
z: [1.3228248 0.2914443 1.9114952]

What do we mean by “datatypes”?

What do we mean by “datatypes”?
Numerical datatypes: how the hardware represents real numbers

What do we mean by “datatypes”?
Numerical datatypes: how the hardware represents real numbers

In the past, this generally meant IEEE 754 floating point:

What do we mean by “datatypes”?

Half

Numerical datatypes: how the hardware represents real numbers

In the past, this generally meant IEEE 754 floating point:

FractionExponent+ 
-

What do we mean by “datatypes”?

Single

Half

Numerical datatypes: how the hardware represents real numbers

In the past, this generally meant IEEE 754 floating point:

FractionExponent+ 
-

What do we mean by “datatypes”?

Double

Single

Half

Numerical datatypes: how the hardware represents real numbers

In the past, this generally meant IEEE 754 floating point:

FractionExponent+ 
-

What do we mean by “datatypes”?

Double

Single

Half

Numerical datatypes: how the hardware represents real numbers

In the past, this generally meant IEEE 754 floating point:

…and others!

FractionExponent+ 
-

Why do we need new datatypes?

Why do we need new datatypes?

Because IEEE floats…

Why do we need new datatypes?

Because IEEE floats…

• take up too much space

Why do we need new datatypes?

Because IEEE floats…

• take up too much space

• have poor dynamic range

Why do we need new datatypes?

Because IEEE floats…

• take up too much space

• have poor dynamic range

• require overly-complex hardware

Why do we need new datatypes?

Because IEEE floats…

• take up too much space

• have poor dynamic range

• require overly-complex hardware

• create reproducibility issues

What do new datatypes look like?

…
+ 
-

… …

What do new datatypes look like?

bfloat16

Posit, n = 16, es = 2 …
+ 
-

… …Flexpoint

bfloat16

Single

bfloat16

FractionExponent+ 
-

Half

bfloat16

Single

bfloat16

FractionExponent+ 
-

Greater dynamic range is more useful for deep learning workloads

Half

Posits

n = 16, es = 2 + 
-

Exp
onen

t

FractionRegime

Posits

Posits use a variable-size regime field to add dynamic scaling: regime determines
another multiplicative factor on the fraction

n = 16, es = 2 + 
-

Exp
onen

t

FractionRegime

http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

Posits

Posits use a variable-size regime field to add dynamic scaling: regime determines
another multiplicative factor on the fraction

Posits can have large dynamic range even down to 8 bits

n = 16, es = 2 + 
-

Exp
onen

t

FractionRegime

http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

Posits

Posits use a variable-size regime field to add dynamic scaling: regime determines
another multiplicative factor on the fraction

Posits can have large dynamic range even down to 8 bits

See John Gustafson’s “Beating Floating Point at its Own Game”

n = 16, es = 2 + 
-

Exp
onen

t

FractionRegime

http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

Flexpoint

Fraction

Fraction

…

Device Host
Shared

Exponent
Error Tracking

…

Flexpoint

Intel’s format for their Nervana processor

Fraction

Fraction

…

Device Host
Shared

Exponent
Error Tracking

…

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Flexpoint

Intel’s format for their Nervana processor

Block floating point: a group of numbers share an exponent

Fraction

Fraction

…

Device Host
Shared

Exponent
Error Tracking

…

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Flexpoint

Intel’s format for their Nervana processor

Block floating point: a group of numbers share an exponent

Plus, they split the fields between host and device!

Fraction

Fraction

…

Device Host
Shared

Exponent
Error Tracking

…

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Flexpoint

Intel’s format for their Nervana processor

Block floating point: a group of numbers share an exponent

Plus, they split the fields between host and device!

See Köster et. al., “An Adaptive Numerical Format for Efficient Training of Deep Neural Networks”

Fraction

Fraction

…

Device Host
Shared

Exponent
Error Tracking

…

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Deepfloat

Deepfloat
Taking inspiration from posits, but with many improvements

Deepfloat
Taking inspiration from posits, but with many improvements

E.g. some computation is done in the log space to reduce hardware complexity

Deepfloat
Taking inspiration from posits, but with many improvements

E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with IEEE
floats:

Deepfloat
Taking inspiration from posits, but with many improvements

E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with IEEE
floats:

Deepfloat
Taking inspiration from posits, but with many improvements

E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with IEEE
floats:

Deepfloat
Taking inspiration from posits, but with many improvements

E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with IEEE
floats:

Deepfloat
Taking inspiration from posits, but with many improvements

E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with IEEE
floats:

Deepfloat
Taking inspiration from posits, but with many improvements

E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with IEEE
floats:

See "Rethinking Floating Point for Deep Learning"

http://learningsys.org/nips18/assets/papers/38CameraReadySubmissiondeepfloat_nips_2018.pdf

Bring Your Own Datatypes

How Datatype Research Works

How Datatype Research Works

How Datatype Research Works

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

How Datatype Research Works

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

How Datatype Research Works

float a =
float b =
f(a,b)
...

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

How Datatype Research Works

float a =
float b =
f(a,b)
...

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

To test their datatype, they will hack
apart a benchmark or application and
shove their software library in

How Datatype Research Works

float a =
float b =
f(a,b)
...

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

To test their datatype, they will hack
apart a benchmark or application and
shove their software library in

How Datatype Research Works

float a =
float b =
f(a,b)
...

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

To test their datatype, they will hack
apart a benchmark or application and
shove their software library in

How Datatype Research Works

float a =
float b =
f(a,b)
...

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

To test their datatype, they will hack
apart a benchmark or application and
shove their software library in

How Datatype Research Works

float a =
float b =
f(a,b)
...

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

To test their datatype, they will hack
apart a benchmark or application and
shove their software library in

Can we do better? Can we use
TVM to compile workloads
with new datatypes?

Supporting Datatype Research With TVM

myType a = myType b = f(a,b) ...

Supporting Datatype Research With TVM

myType a = myType b = f(a,b) ...

Currently, TVM does not know how to
interpret programs with arbitrary
datatypes.

Supporting Datatype Research With TVM

myType a = myType b = f(a,b) ...

???
Currently, TVM does not know how to
interpret programs with arbitrary
datatypes.

Supporting Datatype Research With TVM

myType a = myType b = f(a,b) ...

???
Currently, TVM does not know how to
interpret programs with arbitrary
datatypes.

Luckily, TVM is extensible!

Supporting Datatype Research With TVM

myType a =
myType b =
f(a,b)
...

mytype.exe

Supporting Datatype Research With TVM

myType a =
myType b =
f(a,b)
...

mytype.exe

Supporting Datatype Research With TVM

myType a =
myType b =
f(a,b)
...

Add

Multiply

Cast to Float

mytype.exe

Supporting Datatype Research With TVM

myType a =
myType b =
f(a,b)
...

Add

Multiply

Cast to Float

myType {
size: 16
...
} mytype.exe

Supporting Datatype Research With TVM

myType a =
myType b =
f(a,b)
...

Add

Multiply

Cast to Float

myType {
size: 16
...
}

!!!

mytype.exe

Supporting Datatype Research With TVM

Add

Multiply

Cast to Float

myType {
size: 16
...
}

!!!

mytype.exe

Supporting Datatype Research With TVM

Add

Multiply

Cast to Float

myType {

size: 16

...
}

!!!

mytype.exe

Supporting Datatype Research With TVM

myType {

size: 16

...
}

!!!

mytype.exe

Supporting Datatype Research With TVM

myType {

size: 16

...
}

!!!

mytype.exe

Supporting Datatype Research With TVM

myType {

size: 16

...
}

!!!

mytype.exe

Supporting Datatype Research With TVM

Supporting Datatype Research With TVM

1. User makes or finds a datatype library

Supporting Datatype Research With TVM

1. User makes or finds a datatype library

2. User writes a program using their datatypes directly

Supporting Datatype Research With TVM

1. User makes or finds a datatype library

2. User writes a program using their datatypes directly

3. User points TVM to the important functions (+, ∗) in the library

Supporting Datatype Research With TVM

1. User makes or finds a datatype library

2. User writes a program using their datatypes directly

3. User points TVM to the important functions (+, ∗) in the library

4. User gives TVM other information e.g. datatype size

Supporting Datatype Research With TVM

1. User makes or finds a datatype library

2. User writes a program using their datatypes directly

3. User points TVM to the important functions (+, ∗) in the library

4. User gives TVM other information e.g. datatype size

5. TVM compiles programs, handling the custom datatype by compiling calls into
the provided library

Limitations of this Approach

Limitations of this Approach

Currently, we’re only supporting software implementations of datatypes.

Limitations of this Approach

Currently, we’re only supporting software implementations of datatypes.

Compiling for hardware implementations of the datatype is out of scope for
the moment, but is planned.

Implementation

Datatype Registry

Datatype Registry

User registers their datatype:

Datatype Registry

User registers their datatype:

tvm.datatype.register("bfloat", 129)

Datatype Registry

User registers their datatype:

tvm.datatype.register("bfloat", 129)

Where 129 is a manually chosen code for the type

Datatype Usage

Datatype Usage

Then, in the code, we can give tensors the custom datatype:

Datatype Usage

Then, in the code, we can give tensors the custom datatype:

dtype=“custom[bfloat]16"

Datatype Usage

Then, in the code, we can give tensors the custom datatype:

dtype=“custom[bfloat]16"

Here, “16” is how we tell TVM the size of the datatype.

Operation Registry

Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(

Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
 lower_func,

Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
 lower_func,
 "Add", “llvm", “bfloat”)

Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
 lower_func,
 "Add", “llvm", “bfloat”)

In the common case, we will use:

Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
 lower_func,
 "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(

Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
 lower_func,
 "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
 tvm.datatype.create_lower_func("BFloat16Add"),

Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
 lower_func,
 "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
 tvm.datatype.create_lower_func("BFloat16Add"),
 "Add", “llvm", “bfloat”)

Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
 lower_func,
 "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
 tvm.datatype.create_lower_func("BFloat16Add"),
 "Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:

Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
 lower_func,
 "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
 tvm.datatype.create_lower_func("BFloat16Add"),
 "Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:

Add

x
bfloat

y
bfloat

Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
 lower_func,
 "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
 tvm.datatype.create_lower_func("BFloat16Add"),
 "Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:

Add

x
bfloat

y
bfloat

Operation Registry
Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
 lower_func,
 "Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
 tvm.datatype.create_lower_func("BFloat16Add"),
 "Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:

Add

x
bfloat

y
bfloat

Call
BFloat16Add

x
uint16

y
uint16

Live Coding

Future Work

Future Work

• Short term: evaluating real deep learning models with modern datatypes

Future Work

• Short term: evaluating real deep learning models with modern datatypes

• Long term: supporting custom datatype hardware

Thank You!

