Bring Your Own Datatypes:

Enabling Datatype Exploration in Deep C R I S P
Learning with ®e C\vVIm

Center for Research on Intelligent

Gus Smith, Luis Vega, Tianqi Chen, Thierry Moreau, Luis Ceze Storage and Processing in Memory

CRISP-T3: Scaling Applications and Making the Programmer’s Life Easy 2780.014 — Programming Framework

Backgroung ,

What is ®Sfvim? New Datatypes

To build highly optimized deep learning
accelerators, architects are exploring

’ vl / alternatives to IEEE 754 floating point for
O Q | 'g’ @ representing numbers in hardware.

L) One example is the bfloat16, which saves
Relay: High-Level Differentiable IR Optimization space by dropping 16 bits from a float:

An open-source compiler for deep learning, easily hackable for research and exploration!

Tensor Expression IR " | Expanent Fraction

Another example is the posit, which uses a
variable-size fraction to represent more useful
numbers using fewer bits:
Hardware «
o
Edge Cloud - Fleet o

FPGA FPGA | Rk [| I

. - Close to t1

Relay is TVM'’s high-level, differentiable intermediate representation, where we will allow users

to insert custom datatypes. . I_> Close to extremes
Learn more at tvm.ai!

l What We Did

I To enable TVM to compile machine |

I learning workloads which utilize custom | With this minimal information, TVM
Researchers often prototype new | datatypes, users provide some I can compile deep learning

hardware_ datatypes by emulating | additional information to the compiler: workloads which rely on custom
them with a software library. I datatypes!

First, users indicate which library
functions implement which datatype
operators:

&4 Cast to Float

We built the Bring Your Own
Datatypes framework into TVM,
which allows users to compile real
deep learning workloads which use
these emulated datatypes.

Second, the user
bfloat { specifies some
size: 16 B additional information
about the datatype,
such as its size.

bfloat a
bfloat b
f(a,b)

bfloat.exe

from tvm import relay Wh t, N t?
from ctypes import RTLD_GLOBAL, CDLL a s ex |
Load the bfloat library 1into the address space Make it faSter

CDLL("Llibbfloatl6.s0", RTLD_GLOBAL)

Register the datatype with type code 131

tvm.datatype.register("bfloat", 131) AUtomate exploratlon Of
Register the "Add" operation for bfloats. (antEatS/F)EBES ir] (jEBEBF) IE;Eirr]ir]gJ

i
The second, third, and fourth arguments specify which operation we are

registering: in this case, an Add of two bfloats when compiling for LLVM.

The first argument tells TVM how to actually lower the bfloat adds: \A/()r1(|()53(155
specifically, 1t creates a function which turns the bfloat adds into calls to

the BFloatl6Add function in libbfloatlsé.

t

vm.datatype.register_op(E\{T\./zﬁfa't'g?i;gif?te_lower_func(”BFloathAdd"), "Add", SUppOrt aCtuaI hardware
Create a simple Relay program: Add two bfloats! implementations Of datatypes

shape = (3,)

dtype = 'custom[bfloat]16'

a = relay.var('a', shape=shape, dtype=dtype)
b = relay.var('b', shape=shape, dtype=dtype)
expr a + b

expr = relay.Function([a, b], expr) For more information, please see the
a_data = ... links to the Bring Your Own Datatype

b data = ...
executor = relay.create_executor() S||deS, presentanon, and Python
TVM will run the program, calling out to libbfloatl6é when it encounters the nOtebOOk here

bfloat Add! sampl.cs.washington.edu/tvmfcrc/#program

result = executor.evaluate(expr)(a_data, b_data)

https://tvm.ai/
https://sampl.cs.washington.edu/tvmfcrc/

