Summer 2019 Internship Report

Gus Smith
November 18,2019

$ sampl W L comminsconce vt -

Disclaimer: | have no formal background in program analysis!

Summer goal: Analyze deep learning workloads for “accelerability”

Realization: Most common workloads expressed in Relay are simply straight-line
code. These can be analyzed statically.

My solution:

|. Build simple analysis framework in Relay
2. Write analyses in the framework that gather useful information

3. Meet with architects, iterate on analyses

(my definitions of) Static and Dynamic Analysis

* In my terminology, static analysis ~ dataflow analysis, because these are
straight-line programs

* Dynamic analysis: instrumenting code

* What other types of analysis are there out there!

Static Analysis Framework

The analysis framework helps the user design passes which extract static
information about a program, and helps the user organize and export that
information.

Analysis Structure

Weights
The analysis framework imposes a

general structure for analyses

* [wo parts: initial analysis phase conv2d
(visiting every program node and
extracting data) and summary
phase (visiting the extracted data and
producing summary results)

* Essentially map and reduce phases

Background: ExprVisitor

The analysis framework is built off of Relay’s ExprVisitor.

1 import tvm
2 from tvm import relay

3

4

5 class MyPass(relay.ExprVisitor):
6 def visit_call(self, call):
7 SUper) vasaE call(call)
8 print(call.op)

9

10

My Pass) viisanit(Eetay consE () = ((Felay Var(i X') & reliagy WVar(v

/Users/gus/.pyenv/versions/3.7.4/bin/python tmp.py
vh.0.4

MUECE ey

vh.0.4

subtract

AnalysisPass Class

* A thin wrapper over the ExprVisitor class
* Helper functions like _add detail make it easy to attach analysis data to a node

* Passes can depend on data generated by previous passes, but dependencies are
implicit right now

Demo

https://github.com/gussmith23/tvm/blob/analysis-framework-demo/demo.ipynb

https://github.com/gussmith23/tvm/blob/analysis-framework-demo/demo.ipynb

Dynamic Analysis Experiments

We can instrument the program with counters in two ways:
* Using references—easy to implement, but not good Relay style

* “Functionally”, where every value becomes a tuple of (value, counter)—better
Relay style, but harder to implement

Note: Relay programs may not be dynamic enough to warrant dynamic analysis

Improvements/Future Directions

Separate analysis description from analysis results

Explicit dependencies between passes

Make the framework more useful for gathering actual compiler passes
Build dynamic analysis tools

* Add passes to Relay which rewrite programs, passing around counters and
other data-gathering things

Links

https://github.com/microsoft/Analysis-Framework-for-TVM

https://github.com/gussmith23/tvm/blob/analysis-framework-demo/demo.ipynb

https://github.com/microsoft/Analysis-Framework-for-TVM
https://github.com/gussmith23/tvm/blob/analysis-framework-demo/demo.ipynb

