
Summer 2019 Internship Report
Gus Smith 

November 18, 2019



Disclaimer: I have no formal background in program analysis!



Summer goal: Analyze deep learning workloads for “accelerability”

Realization: Most common workloads expressed in Relay are simply straight-line 
code. These can be analyzed statically.

My solution:

1. Build simple analysis framework in Relay

2. Write analyses in the framework that gather useful information

3. Meet with architects, iterate on analyses



(my definitions of) Static and Dynamic Analysis

• In my terminology, static analysis ≈ dataflow analysis, because these are 
straight-line programs

• Dynamic analysis: instrumenting code

• What other types of analysis are there out there?



Static Analysis Framework



The analysis framework helps the user design passes which extract static 
information about a program, and helps the user organize and export that 

information.



Analysis Structure

The analysis framework imposes a 
general structure for analyses

• Two parts: initial analysis phase 
(visiting every program node and 
extracting data) and summary 
phase (visiting the extracted data and 
producing summary results)

• Essentially map and reduce phases

Input Weights

conv2d

ReLU

Softmax

…



Background: ExprVisitor
The analysis framework is built off of Relay’s ExprVisitor.



AnalysisPass Class

• A thin wrapper over the ExprVisitor class

• Helper functions like _add_detail make it easy to attach analysis data to a node

• Passes can depend on data generated by previous passes, but dependencies are 
implicit right now



Demo

https://github.com/gussmith23/tvm/blob/analysis-framework-demo/demo.ipynb

https://github.com/gussmith23/tvm/blob/analysis-framework-demo/demo.ipynb


Dynamic Analysis Experiments

We can instrument the program with counters in two ways:

• Using references—easy to implement, but not good Relay style

• “Functionally”, where every value becomes a tuple of (value, counter)—better 
Relay style, but harder to implement

Note: Relay programs may not be dynamic enough to warrant dynamic analysis



Improvements/Future Directions

• Separate analysis description from analysis results

• Explicit dependencies between passes

• Make the framework more useful for gathering actual compiler passes

• Build dynamic analysis tools

• Add passes to Relay which rewrite programs, passing around counters and 
other data-gathering things



Links

https://github.com/microsoft/Analysis-Framework-for-TVM

https://github.com/gussmith23/tvm/blob/analysis-framework-demo/demo.ipynb

https://github.com/microsoft/Analysis-Framework-for-TVM
https://github.com/gussmith23/tvm/blob/analysis-framework-demo/demo.ipynb

