Bring Your Own Datatypes into
TVM

Gus Smith

Advisor: Luis Ceze
University of Washington

| Center for Research in Intelligent
Storage and Processing in Memory

$ sampl W L comminsconce vt -

Top-1 accuracy [%]

80

75

~
o

o
Ul

o))
o

55

50

- Inception-v4

Inception-v3’ ResNeit-152

| E : VGG-16 . VGG-19

ResNet-SO‘
- ResNet-101 = g

f ResNet-34

Ty L o LR —
GoogLeNet ' '

e I R e TR

0 5 10 15 20 25 30 35 40
Operations [G-Ops]

An Analysis of Deep Neural Network Models for Practical Applications

https://arxiv.org/pdf/1605.07678.pdf

- Inception-v4

Y I T SR 5=t SN S S
Inception-v3‘ E | ResNe:t-152

resetso) 0 veeas vee1s
75 7 "~ ResNet-101 ' *; | *;

; ResNet-34 | :
704 {ResNet-18-------1----------

GoogLeNet ' ' '

Top-1 accuracy [%]

0 5 10 15 20 25 30 35 40
Operations [G-Ops]

An Analysis of Deep Neural Network Models for Practical Applications

https://arxiv.org/pdf/1605.07678.pdf

ool 1 g L R S
Inception-v3 [. ResNet-152
ResNet-so. A V6G-16 VGG-19
1 ; ResNet-101 ; |
3 . ResNet-34 | | '
§7o —————— e T T
G GoogLeNét |
S ‘ |
3 65 s
© \
& © BN-NIN \ : : :
m 604 S— 5M - 35M - 65M - 95M - 125M - 155M
BN-AlexNet

2> TR “AlexNet

0 5 10 15 20 25 30 35 40
Operations [G-Ops]

An Analysis of Deep Neural Network Models for Practical Applications

https://arxiv.org/pdf/1605.07678.pdf

Inception-v4

80 §---------- Rt g - fSeisgmmme R RSGRE EUTETERTES FEPRRERE
Inception-v3 [ResNet-152
ResNet-so. VGG-16 | VGG-19
75 \ ~ResNet-101 *
. ResNet-34 : | ,
S
= 70 ResNet- 18
P)
© GoogLeNet
S ENet
c |
& © BN-NIN \ | : i
m 604 S— 5M - 35M - 65M - 95M - 125M - 155M
BN-AlexNet
551 AlexNet
50 ' ' T r ' ' 1 T
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

An Analysis of Deep Neural Network Models for Practical Applications

https://arxiv.org/pdf/1605.07678.pdf

J Inception-v4
80 o

Inceptlon v3 ResNet-152
ResNet- 50| . VGG-16 VGG-19
131 ResNet-101 , w
ResNet 34
§ 70 1 ResNet-18
Sare,
© GoogLeNet
S ENet
O 65
—
& ° BN-NIN
= 60 5M 35M - 65M - 95M - 125M - 155M
BN-AlexNet
55 AlexNet
50 ' ' ' ' ' ' T '
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

An Analysis of Deep Neural Network Models for Practical Applications

https://arxiv.org/pdf/1605.07678.pdf

Deep learning needs extreme hardware specialization, and hardware
specialization needs new datatypes.

Background

Background

What is TVM?

Background

What is TVM?

What do we mean by datatypes?

Background

What is TVM?

What do we mean by datatypes?

Why do we need new datatypes!

Background

What is TVM?

What do we mean by datatypes?
Why do we need new datatypes!

What do new datatypes look like?

What is TVM?

BLVM

What is TVM?

BLVM

An extensible, optimizing compiler for deep learning.

http://tvm.ai

What is TVM?

BLVM

An extensible, optimizing compiler for deep learning.

See tvm.ai for more info!

http://tvm.ai

The TVM Stack

The TVM Stack

The TVM Stack

High-Level Differentiable IR

Tensor Expression IR

The TVM Stack

High-Level Differentiable IR

Tensor Expression IR
Optimization

The TVM Stack

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Optimization

The TVM Stack

High-Level Differentiable IR

Tensor Expression IR
Optimization

——————————

Edge Cloud

FPGA FPGA ASIC

Vector Add in VM

S B S
c B O
O O O

S S S
+t |t |t

numpy as n

+
O <

Vector Add in VM

S B S
c B O
O O O

S S S
+t |t |t

numpy as n

+
O <

Vector Add in VM

Vector Add in VM

import tvm
import topi
import numpy as np

X
Y

tvm.placeholder (shape=(3,))
tvm.placeholder (shape=(3,))

Vector Add in VM

import tvm
import topi
import numpy as np

X = tvm.placeholder (shape=(3,))
Y = tvm.placeholder (shape=(3,))
Z = topi.add(X, Y)

Vector Add in VM

import tvm
import topi
import numpy as np

X = tvm.placeholder (shape=(3,))
Y = tvm.placeholder (shape=(3,))
Z = topi.add(X, Y)

Vector Add in VM

import tvm
import topi
import numpy as np

X = tvm.placeholder (shape=(3,))
Y = tvm.placeholder (shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])

Vector Add in VM

import tvm
import topi
import numpy as np

X = tvm.placeholder (shape=(3,))
Y = tvm.placeholder (shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered function = tvm.lower (schedule, [X, Y, Z])

Vector Add in VM

import tvm
import topi
import numpy as np

X = tvm.placeholder (shape=(3,))
Y = tvm.placeholder (shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered function = tvm.lower (schedule, [X, Y, Z])
built program = tvm.build(lowered_function)

Vector Add in VM

import tvm
import topi
import numpy as np

X = tvm.placeholder (shape=(3,))
Y = tvm.placeholder (shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered function = tvm.lower (schedule, [X, Y, Z])
built program = tvm.build(lowered_function)

Vector Add in VM

import tvm
import topi
import numpy as np

X = tvm.placeholder (shape=(3,))
Y = tvm.placeholder (shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered function = tvm.lower (schedule, [X, Y, Z])
built program = tvm.build(lowered_function)

tvm.nd.array(np.random.rand(3) .astype("float32"))
tvm.nd.array(np.random.rand(3) .astype("float32"))

X
A%

import tvm

Vector Add in VM

import topi
import numpy as np

X
Y
/

schedule

tvm.placeholder (shape=(3,))
tvm.placeholder (shape=(3,))
topi.add (X, VY)

tvm.create_schedule([Z.op])

lowered function = tvm.lower (schedule, [X, Y, Z])

built program = tvm.build(lowered_function)

IN < X

tvm. NnC
tvm. NnC

tvm. NnC

.array(np.random.rand(3) .astype("float32"))
.array(np.random.rand(3) .astype("float32"))

.empty ((3,))

import tvm

Vector Add in VM

import topi
import numpy as np

X
Y
/

schedule

tvm.placeholder (shape=(3,))
tvm.placeholder (shape=(3,))
topi.add (X, VY)

tvm.create_schedule([Z.op])

lowered function = tvm.lower (schedule, [X, Y, Z])

built program = tvm.build(lowered_function)

IN < X

tvm. NnC
tvm. NnC

tvm. NnC

.array(np.random.rand(3) .astype("float32"))
.array(np.random.rand(3) .astype("float32"))

.empty ((3,))

Vector Add in VM

import tvm
import topi
import numpy as np

X = tvm.placeholder (shape=(3,))
Y = tvm.placeholder (shape=(3,))
Z = topi.add(X, Y)

schedule = tvm.create_schedule([Z.op])
lowered function = tvm.lower (schedule, [X, Y, Z])
built program = tvm.build(lowered_function)

tvm.nd.array(np.random.rand(3) .astype("float32"))
tvm.nd.array(np.random.rand(3) .astype("float32"))
tvm.nd.empty ((3,))

IN < X
I

built_program(x, y, z)

Vector Add in VM

import tvm
import topi
import numpy as np

X
Y
/

tvm.placeholder (shape=(3,))
tvm.placeholder (shape=(3,))
topi.add (X, VY)

>

schedule = tvm.create_schedule([Z.op])
lowered_function = tvm. lower (schedule,
built program = tvm.build(lowered_function)

tvm.nd.array(np.random.rand(3) .astype("float32"))
tvm.nd.array(np.random.rand(3) .astype("float32"))
tvm.nd.empty ((3,))

IN < X
I I I

built_program(x, y, z)

<

[Xa Ya Z]) Z .

0.5727742 0.16838571 0.964/7/888
O.75005066 0.12305858 0.9467064
1.3228248 0.2914443 1.9114952]

What do we mean by “datatypes’!

What do we mean by “datatypes’!

Numerical datatypes: how the hardware represents real numbers

What do we mean by “datatypes’!

Numerical datatypes: how the hardware represents real numbers

In the past, this generally meant IEEE 754 floating point:

What do we mean by “datatypes’!

Numerical datatypes: how the hardware represents real numbers

In the past, this generally meant IEEE 754 floating point:

What do we mean by “datatypes’?

Numerical datatypes: how the hardware represents real numbers

In the past, this generally meant IEEE 754 floating point:

Half

Single

What do we mean by “datatypes’?

Numerical datatypes: how the hardware represents real numbers

In the past, this generally meant IEEE 754 floating point:

Half

Single

Double

What do we mean by “datatypes’?

Numerical datatypes: how the hardware represents real numbers

In the past, this generally meant IEEE 754 floating point:

Half

Single

Double

..and others!

Why do we need new datatypes?

Why do we need new datatypes?

Because |IEEE floats...

Why do we need new datatypes?

Because |IEEE floats...

* take up too much space

Why do we need new datatypes?

Because |EEE floats...
* take up too much space

* have poor dynamic range

Why do we need new datatypes?

Because |EEE floats...
* take up too much space
* have poor dynamic range

* require overly-complex hardware

Why do we need new datatypes?

Because |EEE floats...

* take up too much space

* have poor dynamic range

* require overly-complex hardware

* create reproducibility issues

What do new datatypes look like?

0000
.

OOOOOOOO

What do new datatypes look like?

bfloatl é

Posit, n =16, es =2 :

--
0000
.

Flexpoint :

OOOOOOOO

bfloatl 6

Single

bfloatl 6

Half

bfloatl 6

Single

bfloatl 6

Half

Greater dynamic range is more useful for deep learning workloads

'acticrn

Posits use a variable-size regime field to add dynamic scaling: regime determines
another multiplicative factor on the fraction

'acticrn

http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

Posits use a variable-size regime field to add dynamic scaling: regime determines
another multiplicative factor on the fraction

'acticrn

Posits can have large dynamic range even down to 8 bits

http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

Posits use a variable-size regime field to add dynamic scaling: regime determines
another multiplicative factor on the fraction

'acticrn

Posits can have large dynamic range even down to 8 bits

See John Gustafson’s “Beating Floating Point at its Own Game”

http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

Device

Fragq

tic

N

*
0‘ o
. N
s N
L [
u [
u []
u [
u [
u []
n [
u [
u []
n [
u [
u []
n [
u [
------------ 1
n [
u [
u []
n [
u [
u []
n [
u [
u []
u [
u n
u []
u
N .
& .
& *

*

expoint

Shared Error Tracking

Exponent

Device

Flexpoint

ll
. L 4
*

Fragq

tic

N

* *
L 4 “
ll

Intel’s format for their Nervana processor

--
** .

.
.

Shared Error Tracking
Exponent

. L 2
L 4 "
II

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Device

Flexpoint

g EEE EEEEEEEESEEEEEEEEESESEEEEEEEESEEEEEEEEEESEEEEEEEENNEEEEENNN
*® ",
*
*

Frag

tic

DN

* *
L 4 “
II

Intel’s format for their Nervana processor

EE NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEEEEEEEENEENN
PR N,
o* .
*

*

Shared Error Tracking
Exponent

. *
L 4 "
ll

Block floating point:a group of humbers share an exponent

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Device

Flexpoint

--
¢¢¢¢¢
* *

Frag

tic

DN

* *
L 4 “
II

Intel’s format for their Nervana processor

ll

PR N,

o* .
*

*

Shared Error Tracking
Exponent

. *
L 4 "
II

Block floating point:a group of humbers share an exponent

Plus, they split the fields between host and device!

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Flexpoint

E I BN E E EENN g i i H SN EE S EE EEENEARN
.........
* * * *
* .

Device

Shared Error Tracking
Exponent

* *
*
* .
SN EEES

Intel’s format for their Nervana processor
Block floating point: a group of numbers share an exponent
Plus, they split the fields between host and device!

See Koster et.al.,””An Adaptive Numerical Format for Efficient Training of Deep Neural Networks”

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Deepfloat

Deepfloat

Taking inspiration from posits, but with many improvements

Deepfloat

Taking inspiration from posits, but with many improvements

E.g. some computation is done in the log space to reduce hardware complexity

Deepfloat

Taking inspiration from posits, but with many improvements
E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with |EEE
floats:

Deepfloat

Taking inspiration from posits, but with many improvements
E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with |EEE
floats:

Table 3: Chip area and power for 28 nm, 1-cycle multiply-add at 500 MHz

Component Area um? Power uW
int8/32 MAC PE 336.672 283

Deepfloat

Taking inspiration from posits, but with many improvements
E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with |EEE
floats:

Table 3: Chip area and power for 28 nm, 1-cycle multiply-add at 500 MHz

Component Area um? Power uW
int8/32 MAC PE 336.672 283

Q8,1,5,5,7) log ELMA PE 376.110 272

Deepfloat

Taking inspiration from posits, but with many improvements
E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with |EEE
floats:

Table 3: Chip area and power for 28 nm, 1-cycle multiply-add at 500 MHz

Component Area um? Power uW
int8/32 MAC PE 336.672 283
8,1, 5,5, 7) log ELMA PE 376110 272

floatl6 (w/o denormals) FMA PE 1545.012 1358

Deepfloat

Taking inspiration from posits, but with many improvements
E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with |EEE
floats:

Table 3: Chip area and power for 28 nm, 1-cycle multiply-add at 500 MHz

Component Area um? Power uW
int8/32 MAC PE 336.672 283

@8, 1,5, 5,7) log ELMA PE 376110 272
floatl6 (w/o denormals) FMA PE 1545.012 1358

5,10) (11,11, 10) log ELMA PE 1043.154 805

Deepfloat

Taking inspiration from posits, but with many improvements
E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with |EEE
floats:

Table 3: Chip area and power for 28 nm, 1-cycle multiply-add at 500 MHz

Component Area um? Power uW
int8/32 MAC PE 336.672 283

8,1, 5,5, 7) log ELMA PE 376110 272
floatl6 (w/o denormals) FMA PE 1545.012 1358
5,10) (11,11, 10) log ELMA PE 1043.154 805

See "Rethinking Floating Point for Deep Learning”

http://learningsys.org/nips18/assets/papers/38CameraReadySubmissiondeepfloat_nips_2018.pdf

Bring Your Own Datatypes

How Datatype Research VVorks

How Datatype Research VVorks

How Datatype Research VVorks

To prototype a hardware datatype,
researchers will emulate the datatype ‘
in software by building a software
library

How Datatype Research VVorks

To prototype a hardware datatype,
researchers will emulate the datatype ‘
in software by building a software
library

How Datatype Research VVorks

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

float a

float b
f(a,b)

Row Datatype

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

To test their datatype, they will hack
apart a benchmark or application and
shove their software library in

Research VWorks

float a

float b
f(a,b)

Row Datatype

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

To test their datatype, they will hack
apart a benchmark or application and
shove their software library in

Research VWorks

Row Datatype

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

To test their datatype, they will hack
apart a benchmark or application and
shove their software library in

Research VWorks

float a

float b
f(a,b)

Row Datatype

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

To test their datatype, they will hack
apart a benchmark or application and
shove their software library in

Research VWorks

How Datatype

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

To test their datatype, they will hack
apart a benchmark or application and
shove their software library in

Can we do better? Can we use
TVM to compile workloads
with new datatypes!?

Research VWorks

Supporting Datatype Research With TVM

Supporting Datatype Research With TVM

Currently, VM does not know how to
interpret programs with arbitrary
datatypes.

Supporting Datatype Research With TVM

Currently, VM does not know how to
interpret programs with arbitrary
datatypes.

Supporting Datatype Research With TVM

|

Currently, VM does not know how to

interpret programs with arbitrary
datatypes.

Luckily, TVM is extensible!

Supporting Datatype Research With TVM

Supporting Datatype Research With TVM

Supporting Datatype Research With TVM

Supporting Datatype Research With TVM

:l"" e
:*—c ast to Float

Supporting Datatype Research With TVM
190

:l"" e
:*—c ast to Float

Supporting Datatype Research With TVM
190

:l"" e
:4———c ast to Float

Supporting Datatype Research With TVM
190

Ll
»

Supporting Datatype Research With TVM
190

> »

Supporting Datatype Research With TVM
190

> »

Supporting Datatype Research With TVM
190

> »

=

=

Supporting Datatype Research With TVM

Supporting Datatype Research With TVM

|. User makes or finds a datatype library

Supporting Datatype Research With TVM

|. User makes or finds a datatype library

2. User writes a program using their datatypes directly

Supporting Datatype Research With TVM

|. User makes or finds a datatype library
2. User writes a program using their datatypes directly

3. User points TVM to the important functions (+, %) in the library

Supporting Datatype Research With TVM

|. User makes or finds a datatype library
2. User writes a program using their datatypes directly

3. User points TVM to the important functions (+, %) in the library

4. User gives TVM other information e.g. datatype size

Supporting Datatype Research With TVM

|. User makes or finds a datatype library
2. User writes a program using their datatypes directly

3. User points TVM to the important functions (+, %) in the library

4. User gives TVM other information e.g. datatype size

5. TVM compiles programs, handling the custom datatype by compiling calls into
the provided library

Limitations of this Approach

Limitations of this Approach

Currently, we're only supporting software implementations of datatypes.

Limitations of this Approach

Currently, we're only supporting software implementations of datatypes.

Compiling for hardware implementations of the datatype is out of scope for
the moment, but is planned.

Implementation

Datatype Registry

Datatype Registry

User registers their datatype:

Datatype Registry

User registers their datatype:

tvm.datatype.register("bfloat", 129)

Datatype Registry

User registers their datatype:

tvm.datatype.register("bfloat", 129)

Where 129 is a manually chosen code for the type

Datatype Usage

Datatype Usage

Then, in the code, we can give tensors the custom datatype:

Datatype Usage

Then, in the code, we can give tensors the custom datatype:

dtype=“custom[bfloat]16"

Datatype Usage

Then, in the code, we can give tensors the custom datatype:

dtype=“custom[bfloat]16"

Here, 16" is how we tell TVM the size of the datatype.

Operation Registry

Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(

Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
lower_func,

Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
lower_func,
"Add", “llvm", “bfloat”)

Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
lower_func,
"Add", “llvm", “bfloat”)

In the common case, we will use:

Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
lower_func,
"Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(

Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
lower_func,
"Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(
tvm.datatype.create_lower_func("BFloatl16Add"),

Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
lower_func,
"Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(

tvm.datatype.create_lower_func('"BFloatl6Add"),
"Add", “llvm", “bfloat”)

Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
lower_func,
"Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(

tvm.datatype.create_lower_func('"BFloatl6Add"),
"Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:

Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
lower_func,
"Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(

tvm.datatype.create_lower_func('"BFloatl6Add"),
"Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:

X Y
bfloat bfloat

Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
lower_func,
"Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(

tvm.datatype.create_lower_func('"BFloatl6Add"),
"Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:

X 4
bfloat bfloat

Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
lower_func,
"Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(

tvm.datatype.create_lower_func('"BFloatl6Add"),
"Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:

X y X)4
bfloat bfloat uintl 6 uintl 6

Call
BFloat| 6Add

Live Coding

Future VVork

Future VVork

* Short term: evaluating real deep learning models with modern datatypes

Future VVork

* Short term: evaluating real deep learning models with modern datatypes

* |ong term: supporting custom datatype hardware

Thank You!

CRISP

Center for Research in Intelligent
Storage and Processing in Memory

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

