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Deep learning needs extreme hardware specialization, and hardware
specialization needs new datatypes.
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What is TVM?

BLVM

An extensible, optimizing compiler for deep learning.

See tvm.ai for more info!



http://tvm.ai
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import tvm
import topi
import numpy as np
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tvm.placeholder (shape=(3, ))
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topi.add (X, VY)
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schedule = tvm.create_schedule([Z.op])
lowered_function = tvm. lower (schedule,
built program = tvm.build(lowered_function)
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Numerical datatypes: how the hardware represents real numbers

In the past, this generally meant IEEE 754 floating point:

Half

Single

Double

..and others!
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Why do we need new datatypes?

Because |EEE floats...

* take up too much space

* have poor dynamic range

* require overly-complex hardware

* create reproducibility issues
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What do new datatypes look like?

bfloatl é

Posit, n =16, es =2 :

------------------------------------------------------------------------------------------------------------
0000
.

Flexpoint :

OOOOOOOO
-----------------------------------------------------------------------------------------------------------
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bfloatl 6

Half

Greater dynamic range is more useful for deep learning workloads
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Posits use a variable-size regime field to add dynamic scaling: regime determines
another multiplicative factor on the fraction

'acticrn

Posits can have large dynamic range even down to 8 bits

See John Gustafson’s “Beating Floating Point at its Own Game”
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See Koster et.al.,””An Adaptive Numerical Format for Efficient Training of Deep Neural Networks”
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Deepfloat

Taking inspiration from posits, but with many improvements
E.g. some computation is done in the log space to reduce hardware complexity

Hardware implementation from Jeff Johnson at Facebook is competitive with |EEE
floats:

Table 3: Chip area and power for 28 nm, 1-cycle multiply-add at 500 MHz

Component Area um? Power uW
int8/32 MAC PE 336.672 283

8,1, 5,5, 7) log ELMA PE 376110 272
floatl6 (w/o denormals) FMA PE 1545.012 1358
5,10) (11,11, 10) log ELMA PE 1043.154 805

See "Rethinking Floating Point for Deep Learning”
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How Datatype

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library

To test their datatype, they will hack
apart a benchmark or application and
shove their software library in

Can we do better? Can we use
TVM to compile workloads
with new datatypes!?

Research VWorks
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|

Currently, VM does not know how to

interpret programs with arbitrary
datatypes.

Luckily, TVM is extensible!
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|. User makes or finds a datatype library
2. User writes a program using their datatypes directly

3. User points TVM to the important functions (+, %) in the library

4. User gives TVM other information e.g. datatype size

5. TVM compiles programs, handling the custom datatype by compiling calls into
the provided library
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Limitations of this Approach

Currently, we're only supporting software implementations of datatypes.

Compiling for hardware implementations of the datatype is out of scope for
the moment, but is planned.
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Datatype Registry

User registers their datatype:

tvm.datatype.register("bfloat", 129)

Where 129 is a manually chosen code for the type
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Datatype Usage

Then, in the code, we can give tensors the custom datatype:

dtype=“custom[bfloat]16"

Here, 16" is how we tell TVM the size of the datatype.
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Operation Registry

Then, the user registers a lowering function which lowers operations over the datatype:

tvm.datatype.register_op(
lower_func,
"Add", “llvm", “bfloat”)

In the common case, we will use:

tvm.datatype.register_op(

tvm.datatype.create_lower_func('"BFloatl6Add"),
"Add", “llvm", “bfloat”)

This creates a lowering function which converts Adds to Calls to the bfloat add library function:

X y X )4
bfloat bfloat uintl 6 uintl 6

Call
BFloat| 6Add
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Future VVork

* Short term: evaluating real deep learning models with modern datatypes

* |ong term: supporting custom datatype hardware



Thank You!
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