
Bring Your Own Datatypes:  
Enabling Number Format Exploration

with TVM
Gus Smith

University of Washington

In this session

In this session

• Why you should care about new datatypes

In this session

• Why you should care about new datatypes

• How TVM supports datatype exploration

In this session

• Why you should care about new datatypes

• How TVM supports datatype exploration

Currently: software support only

In this session

• Why you should care about new datatypes

• How TVM supports datatype exploration

Currently: software support only

Future directions: hardware support

In this session

• Why you should care about new datatypes

• How TVM supports datatype exploration

Currently: software support only

Future directions: hardware support

• …and of course, a coding session!

VTA

VTA

bfloat16

VTA

bfloat16

…Flexpoint

VTA

bfloat16

…Flexpoint

Your Datatype!

What’s wrong with IEEE floats?

FractionExponent+ 
-

What’s wrong with IEEE floats?

IEEE floats…

FractionExponent+ 
-

What’s wrong with IEEE floats?

IEEE floats…

• take up too much space,

FractionExponent+ 
-

What’s wrong with IEEE floats?

IEEE floats…

• take up too much space,

• have poor dynamic range for their size, and

FractionExponent+ 
-

What’s wrong with IEEE floats?

IEEE floats…

• take up too much space,

• have poor dynamic range for their size, and

• require overly-complex hardware

FractionExponent+ 
-

Modern Datatype Examples

Modern Datatype Examples

bfloat16 + 
- Exponent Fraction

Modern Datatype Examples

(discarded bits from 32 bit float)bfloat16 + 
- Exponent Fraction

Modern Datatype Examples

(discarded bits from 32 bit float)

+ 
-

Exp
onen

t

FractionRegimePosit

bfloat16 + 
- Exponent Fraction

Modern Datatype Examples

(discarded bits from 32 bit float)

+ 
-

Exp
onen

t

FractionRegimePosit

bfloat16 + 
- Exponent Fraction

Modern Datatype Examples

(discarded bits from 32 bit float)

Close to ±1

+ 
-

Exp
onen

t

FractionRegimePosit

bfloat16 + 
- Exponent Fraction

Modern Datatype Examples

(discarded bits from 32 bit float)

Close to ±1

+ 
-

Exp
onen

t

FractionRegimePosit

bfloat16 + 
- Exponent Fraction

Modern Datatype Examples

(discarded bits from 32 bit float)

Close to ±1

Close to extremes

+ 
-

Exp
onen

t

FractionRegimePosit

bfloat16 + 
- Exponent Fraction

Deep learning needs hardware specialization

Deep learning needs hardware specialization
…and hardware specialization needs new datatypes!

Our goal is to make datatype exploration easy with TVM.

Our goal is to make datatype exploration easy with TVM.

This helps

Our goal is to make datatype exploration easy with TVM.

This helps

• datatype researchers, who need easy ways to test their datatypes,

Our goal is to make datatype exploration easy with TVM.

This helps

• datatype researchers, who need easy ways to test their datatypes,

• but also, all TVM users, who can easily use new datatypes in their models.

Bring Your Own Datatypes

How to Use New Datatypes (without TVM!)

How to Use New Datatypes (without TVM!)

How to Use New Datatypes (without TVM!)

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library.

How to Use New Datatypes (without TVM!)

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library.

How to Use New Datatypes (without TVM!)

float a =
float b =
f(a,b)
...

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library.

To use the datatype in real workloads,
such as deep learning models, users will
have to hack the library into the
workload.

How to Use New Datatypes (without TVM!)

float a =
float b =
f(a,b)
...

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library.

To use the datatype in real workloads,
such as deep learning models, users will
have to hack the library into the
workload.

How to Use New Datatypes (without TVM!)

float a =
float b =
f(a,b)
...

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library.

To use the datatype in real workloads,
such as deep learning models, users will
have to hack the library into the
workload.

How to Use New Datatypes (without TVM!)

float a =
float b =
f(a,b)
...

To prototype a hardware datatype,
researchers will emulate the datatype
in software by building a software
library.

To use the datatype in real workloads,
such as deep learning models, users will
have to hack the library into the
workload.

An Example in the Wild!

An Example in the Wild!

https://github.com/xman/tensorflow/tree/posit

https://github.com/xman/tensorflow/tree/posit

An Example in the Wild!

https://github.com/xman/tensorflow/tree/posit

https://github.com/xman/tensorflow/tree/posit

An Example in the Wild!

https://github.com/xman/tensorflow/tree/posit

https://github.com/xman/tensorflow/tree/posit

An Example in the Wild!

https://github.com/xman/tensorflow/tree/posit

https://github.com/xman/tensorflow/tree/posit

Can we do better? Can we let users bring their own datatypes to TVM, and
have TVM do the rest of the work?

How to Use New Datatypes (with TVM!)

bfloat a = bfloat b = f(a,b) ...

How to Use New Datatypes (with TVM!)

bfloat a = bfloat b = f(a,b) ...

Out of the box, TVM does not know
how to interpret programs with
custom datatypes.

How to Use New Datatypes (with TVM!)

bfloat a = bfloat b = f(a,b) ...

???
Out of the box, TVM does not know
how to interpret programs with
custom datatypes.

How to Use New Datatypes (with TVM!)

bfloat a = bfloat b = f(a,b) ...

???
Out of the box, TVM does not know
how to interpret programs with
custom datatypes.

But, with a bit of information, TVM can
compile and run these programs easily!

How to Use New Datatypes (with TVM!)

bfloat a =
bfloat b =
f(a,b)
...

bfloat.exe

How to Use New Datatypes (with TVM!)

bfloat a =
bfloat b =
f(a,b)
...

Add

Multiply

Cast to Float

bfloat.exe

How to Use New Datatypes (with TVM!)

bfloat a =
bfloat b =
f(a,b)
...

Add

Multiply

Cast to Float

bfloat {
size: 16
...
} bfloat.exe

How to Use New Datatypes (with TVM!)

bfloat a =
bfloat b =
f(a,b)
...

Add

Multiply

Cast to Float

bfloat {
size: 16
...
}

!!!

bfloat.exe

How to Use New Datatypes (with TVM!)

Add

Multiply

Cast to Float

bfloat {
size: 16
...
}

!!!

bfloat.exe

How to Use New Datatypes (with TVM!)

Add

Multiply

Cast to Float

bfloat {

size: 16

...
}

!!!

bfloat.exe

How to Use New Datatypes (with TVM!)

bfloat {

size: 16

...
}

!!!

bfloat.exe

How to Use New Datatypes (with TVM!)

bfloat {

size: 16

...
}

!!!

bfloat.exe

How to Use New Datatypes (with TVM!)

bfloat {

size: 16

...
}

!!!

bfloat.exe

How to Use New Datatypes (with TVM!)

How to Use New Datatypes (with TVM!)

1. User makes or finds a library which implements their datatype in software

How to Use New Datatypes (with TVM!)

1. User makes or finds a library which implements their datatype in software

2. User writes a program which uses their custom datatype

How to Use New Datatypes (with TVM!)

1. User makes or finds a library which implements their datatype in software

2. User writes a program which uses their custom datatype

3. User points TVM to the important functions (+, ∗, cast-to-float) in the library

How to Use New Datatypes (with TVM!)

1. User makes or finds a library which implements their datatype in software

2. User writes a program which uses their custom datatype

3. User points TVM to the important functions (+, ∗, cast-to-float) in the library

4. User gives TVM other information e.g. datatype size

How to Use New Datatypes (with TVM!)

1. User makes or finds a library which implements their datatype in software

2. User writes a program which uses their custom datatype

3. User points TVM to the important functions (+, ∗, cast-to-float) in the library

4. User gives TVM other information e.g. datatype size

5. TVM compiles the program, handling the custom datatype by compiling to calls
into the provided library

Limitations of this Approach

Limitations of this Approach

Currently, we’re only supporting software implementations of datatypes.

Limitations of this Approach

Currently, we’re only supporting software implementations of datatypes.

Compiling for hardware implementations is a work in progress!

Future Work

Future Work

• Short term: evaluating real deep learning models with software emulations of
modern datatypes

Future Work

• Short term: evaluating real deep learning models with software emulations of
modern datatypes

Have a model or datatype you’re interested in specifically? I can help!

Future Work

• Short term: evaluating real deep learning models with software emulations of
modern datatypes

Have a model or datatype you’re interested in specifically? I can help!

• Also short term: improving performance in software (datatype emulation
libraries are slow, and models run many operations!)

Future Work

• Short term: evaluating real deep learning models with software emulations of
modern datatypes

Have a model or datatype you’re interested in specifically? I can help!

• Also short term: improving performance in software (datatype emulation
libraries are slow, and models run many operations!)

• Long term: supporting custom datatype hardware implementations in VTA

Let’s move to the notebook! (link)

https://github.com/uwsampl/tutorial/blob/master/notebook/08_TVM_Tutorial_BringYourOwnDatatypes.ipynb

