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• …and of course, a coding session!
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IEEE floats…

• take up too much space,

• have poor dynamic range for their size, and

• require overly-complex hardware

FractionExponent+ 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Our goal is to make datatype exploration easy with TVM.

This helps

• datatype researchers, who need easy ways to test their datatypes,

• but also, all TVM users, who can easily use new datatypes in their models.
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Can we do better? Can we let users bring their own datatypes to TVM, and 
have TVM do the rest of the work? 
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bfloat a =  bfloat b = f(a,b) ...

???
Out of the box, TVM does not know 
how to interpret programs with 
custom datatypes.

But, with a bit of information, TVM can 
compile and run these programs easily!
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How to Use New Datatypes (with TVM!)

1. User makes or finds a library which implements their datatype in software

2. User writes a program which uses their custom datatype

3. User points TVM to the important functions (+, ∗, cast-to-float) in the library

4. User gives TVM other information e.g. datatype size

5. TVM compiles the program, handling the custom datatype by compiling to calls 
into the provided library
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Limitations of this Approach

Currently, we’re only supporting software implementations of datatypes.

Compiling for hardware implementations is a work in progress!
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Future Work

• Short term: evaluating real deep learning models with software emulations of 
modern datatypes

Have a model or datatype you’re interested in specifically? I can help!

• Also short term: improving performance in software (datatype emulation 
libraries are slow, and models run many operations!)

• Long term: supporting custom datatype hardware implementations in VTA



Let’s move to the notebook! (link)

https://github.com/uwsampl/tutorial/blob/master/notebook/08_TVM_Tutorial_BringYourOwnDatatypes.ipynb

