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By “datatypes”, I mean numerical datatypes: how the hardware represents and 
operates on real numbers.
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IEEE 754 Floating Point

Has remained an industry standard for more than thirty years!
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Only needs to represent a specific range of values: 
Weights and activations cluster (e.g. around [-1, 1])

Should be fast and power-efficient

Needs small weights and activations 
to maximize usage of chip area
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The computational demands of deep learning require new datatypes…

…but datatype research is difficult!

Our solution: the Bring Your Own Datatypes framework.
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But first…what is TVM?

An extensible, optimizing compiler for deep learning.

See tvm.ai for more info!

http://tvm.ai
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To register their datatype, the user provides a name and 
type code:
tvm.datatype.register("bfloat", 129)

This allows TVM to parse programs which use the 
datatype!
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Registry
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Lowering Funcs

Users register lowering functions with a similar API: 

tvm.datatype.register_op(
        lower_func, "Add", “llvm", “bfloat”)

This registers a lowering function which lowers bfloat Adds 
when compiling to LLVM.

TVM will later use this lowering function when it spits out 
code!
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What do lowering functions look like?

Add

bfloat16 x bfloat16 y  

Lowering functions convert programs using custom datatypes into programs that native TVM can 
understand and compile.

In our case, we know our Add over bfloats should become a call to our bfloat library!

And the inputs? They can just be hidden in opaque unsigned integer types!

We provide a helper function for creating this type of lowering function: 
tvm.datatype.create_lower_func(“BFloat16Add")

Call to
BFloat16Add

uint16_t x uint16_t y  

(call to external 
library)
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What do we have?

• Datatype name

• Lowering functions—user just provides names of library functions!

1. User makes or finds a custom datatype library which they’d like to use in 
deep learning workloads

2. User gives TVM some information about the library

3. TVM compiles and runs programs which use the custom datatype, 
handling the custom datatype by calling into the provided library
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We will first discuss the experiment itself and its results—then, we will reflect on 
the utility of the framework.
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1. Gathered a list of datatypes

• TVM-native

• Hand-made

• From GitHub

2. Pretrained models on the entire 
CIFAR-10 training set (50k images, 
10 classes) in float32 using PyTorch 

3. Converted the pretrained weights 
to the custom datatypes.

• This was done without retraining

4. Ran the models with the converted 
datatypes over a sample of the 
CIFAR-10 test set (100 images each) 
using TVM
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• TVM-native float32 (not using 
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• float32 (using the framework) 

• Two implementations of posit8es0, 
posit16es1,  posit32es2:

• Stillwater Supercomputing’s 
Universal library

• libposit 

• Two implementations of bfloat16:

• My own “naive” implementation

• biovault-bfloat16: another 
implementation from GitHub

• “noptype”: always returns 0

https://github.com/stillwater-sc/universal
https://github.com/stillwater-sc/universal
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Models:

• MobilenetV1

• Resnet50



Experiment Results and Evaluation



resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71



resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71



resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71



resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71



resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71



resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71

✅

✅

✅

✅



resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71

❌

❌



resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71

✅

✅

❌

❌

Same size!



Framework Evaluation



I wanted to evaluate three aspects of the framework:



I wanted to evaluate three aspects of the framework:

• Overhead



I wanted to evaluate three aspects of the framework:

• Overhead

• Ease of use



I wanted to evaluate three aspects of the framework:

• Overhead

• Ease of use

• Breadth of datatypes which can be used
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mobilenet v1

mean inference time (s) framework overhead

native float32 0.10 1x

float32 0.12 1.11x

noptype 0.11 1.10x

resnet50

mean inference time (s) framework overhead

native float32 0.21 1x

float32 0.52 2.51x

noptype 0.28 1.35x

Main source of overhead: not in added computation, but in the compilation opportunity cost.

• noptype is fairly low-overhead in both workloads → function calls don’t add too much

• float32 is low-overhead in Mobilenet, which is optimized for low total float ops

• …but float32 is high-overhead in ResNet → native float32 ResNet much more optimized!
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By the Numbers…
To use libposit posit32 in Mobilenet and ResNet…

• A total of 12 operators needed to be implemented, taking about 70 lines of C++ in a 
wrapper library.

• Operators including casts to/from posits, add/sub/mul/div, more complex math 
operators like exp, and comparators like max.

• In the 150-line Python script which runs ResNet50 with posit32,

• 57 lines register the datatype and define lowering functions for the 12 operators,

• 3 lines convert the model to posit32,

• 3 lines convert the input, run the model, and convert the output.
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How could we improve?

• Allow the user to specify their own calling convention, removing the need for a 
wrapper over the library

• Implement cleaner registration functions in the TVM Python frontend
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Breadth of Datatypes

We were able to successfully represent a small sample of modern datatypes!

Questionable whether current BYOD can represent…

• Block floating point, or any other type with “external” state

• Datatypes with elements larger than 64 bits

Could potentially be implemented by allowing datatypes to attach metadata to each 
scalar
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Future Work

• Training in TVM—ramifications for custom datatypes?

• Improve performance

• Enable inlining of LLVM

• Allow users to supply optimized kernels for higher-level operators, e.g. posit 
conv2d

• Tackle complex datatypes like block floating point
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In conclusion, I have presented the Bring Your Own Datatypes framework.

I have shown how the framework can enable useful datatype research.



Thank You!



Extra Slides



Registering the Datatype



✅ Any loaded C-linkage functions will work!

Registering the Datatype



✅ Helper functions for common-case

✅ Any loaded C-linkage functions will work!

Registering the Datatype



Implementing the Datatype



❌ Inflexible calling convention

Implementing the Datatype



Converting the Program



✅ Changing datatype of  
a program is easy!

Converting the Program
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✅ Converting data is also easy!

❌ Have to manually disable vectorization

Running the Program
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Similar magnitude → similar exponents
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…

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf


Accelerator Host (CPU)

Flexpoint

Fraction

Fraction

…

Shared 
Exponent

See Köster et. al., “An Adaptive Numerical Format for Efficient Training of Deep Neural Networks”

Error Tracking

…

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf


Accelerator Host (CPU)

Flexpoint

Fraction

Fraction

…

Shared 
Exponent

See Köster et. al., “An Adaptive Numerical Format for Efficient Training of Deep Neural Networks”

Error Tracking

…

Just integers! We can use integer hardware!

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

