
Bring Your Own Datatypes:
Enabling Custom Datatype Exploration

in Deep Learning
Gus Smith, Qualifying Exam

February 24th, 2020

By “datatypes”, I mean numerical datatypes: how the hardware represents and
operates on real numbers.

IEEE 754 Floating Point

Fraction
+
-

Single precision (32 bit) Exponent

value ≈ sign * 2exponent * 1.fraction

IEEE 754 Floating Point

Fraction
+
-

Half precision (16 bit)

Single precision (32 bit) Exponent

value ≈ sign * 2exponent * 1.fraction

IEEE 754 Floating Point

Fraction
+
-

Double precision (64 bit)

Half precision (16 bit)

Single precision (32 bit) Exponent

value ≈ sign * 2exponent * 1.fraction

IEEE 754 Floating Point

Has remained an industry standard for more than thirty years!

Fraction
+
-

Double precision (64 bit)

Half precision (16 bit)

Single precision (32 bit) Exponent

value ≈ sign * 2exponent * 1.fraction

()

Should be fast and power-efficient

Should be fast and power-efficient

Needs small weights and activations
to maximize usage of chip area

Only needs to represent a specific range of values:
Weights and activations cluster (e.g. around [-1, 1])

Should be fast and power-efficient

Needs small weights and activations
to maximize usage of chip area

bfloat16

Single precision IEEE float (32 bit) FractionExponent+
-

See https://cloud.google.com/tpu/docs/bfloat16

https://cloud.google.com/tpu/docs/bfloat16

bfloat16

Single precision IEEE float (32 bit) FractionExponent+
-

(discarded bits from 32 bit float)bfloat16

See https://cloud.google.com/tpu/docs/bfloat16

https://cloud.google.com/tpu/docs/bfloat16

Posits

+
-

Exp
onen

t

FractionRegime

See www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

Posits

+
-

Exp
onen

t

FractionRegime

See www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

Posits

+
-

Exp
onen

t

FractionRegime

See www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

Posits

+
-

Exp
onen

t

FractionRegime

Close to ±1, more precision!

See www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

Posits

+
-

Exp
onen

t

FractionRegime

Close to ±1, more precision!

Close to extremes, less precision!

See www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

Deep learning needs hardware specialization…

Deep learning needs hardware specialization…
…and hardware specialization needs new datatypes!

https://github.com/cjdelisle/libposit

https://github.com/cjdelisle/libposit

https://github.com/cjdelisle/libposit

https://github.com/cjdelisle/libposit

https://github.com/cjdelisle/libposit

https://github.com/cjdelisle/libposit

!

https://github.com/cjdelisle/libposit

https://github.com/cjdelisle/libposit

!
!

https://github.com/cjdelisle/libposit

https://github.com/cjdelisle/libposit

!
!

✔

https://github.com/cjdelisle/libposit

https://github.com/cjdelisle/libposit

!
!

✔
✔

https://github.com/cjdelisle/libposit

https://github.com/cjdelisle/libposit

!
!

✔
✔

✔

https://github.com/cjdelisle/libposit

https://github.com/cjdelisle/libposit

!
!

✔
✔

✔
✔

https://github.com/cjdelisle/libposit

https://github.com/cjdelisle/libposit

float a =
float b =
f(a,b)
...

float a =
float b =
f(a,b)
...

float a =
float b =
f(a,b)
...

float a =
float b =
f(a,b)
...

float a =
float b =
f(a,b)
...

float a =
float b =
f(a,b)
...

myType a =
myType b =
f(a,b)
...

mytype.exe

myType a =
myType b =
f(a,b)
...

mytype.exe

myType a =
myType b =
f(a,b)
...

mytype.exe

mytype.exe

mytype.exe

An Example in the Wild!

An Example in the Wild!

https://github.com/xman/tensorflow/tree/posit

https://github.com/xman/tensorflow/tree/posit

An Example in the Wild!

https://github.com/xman/tensorflow/tree/posit

https://github.com/xman/tensorflow/tree/posit

An Example in the Wild!

https://github.com/xman/tensorflow/tree/posit

https://github.com/xman/tensorflow/tree/posit

An Example in the Wild!

https://github.com/xman/tensorflow/tree/posit

https://github.com/xman/tensorflow/tree/posit

The computational demands of deep learning require new datatypes…

The computational demands of deep learning require new datatypes…

…but datatype research is difficult!

The computational demands of deep learning require new datatypes…

…but datatype research is difficult!

Our solution: the Bring Your Own Datatypes framework.

myType a =
myType b =
f(a,b)
...

mytype.exe

myType a =
myType b =
f(a,b)
...

mytype.exe

myType a =
myType b =
f(a,b)
...

additional
info about
your type

mytype.exe

myType a =
myType b =
f(a,b)
...

additional

info about

your type

mytype.exe

additional

info about

your type

mytype.exe

additional

info about

your type

mytype.exe

Bring Your Own Datatypes

What do we want?

What do we want?

1. User makes or finds a custom datatype library which they’d like to use in
deep learning workloads

What do we want?

1. User makes or finds a custom datatype library which they’d like to use in
deep learning workloads

2. User gives TVM some information about the library

What do we want?

1. User makes or finds a custom datatype library which they’d like to use in
deep learning workloads

2. User gives TVM some information about the library

3. TVM compiles and runs programs which use the custom datatype,
handling the custom datatype by calling into the provided library

But first…what is TVM?

But first…what is TVM?

An extensible, optimizing compiler for deep learning.

http://tvm.ai

But first…what is TVM?

An extensible, optimizing compiler for deep learning.

See tvm.ai for more info!

http://tvm.ai

The TVM Stack

Optimization

AutoTVM

AutoVTA

Relay: High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC Hardware
Fleet

The TVM Stack

TVM IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

Datatypes
Registry

TVM IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

Datatypes
Registry

TVM IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

Datatypes
Registry

IR Parsing
TVM IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

Datatypes
Registry

List of Types
IR Parsing

TVM IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

Datatypes
Registry

List of Types
IR Parsing

Lowering

TVM IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

Datatypes
Registry

List of Types

Lowering Funcs

IR Parsing

Lowering

TVM IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

Datatypes
Registry

List of Types

Lowering Funcs

Datatypes
Registry

List of Types

Lowering Funcs

To register their datatype, the user provides a name and
type code:

Datatypes
Registry

List of Types

Lowering Funcs

To register their datatype, the user provides a name and
type code:
tvm.datatype.register("bfloat", 129)

Datatypes
Registry

List of Types

Lowering Funcs

To register their datatype, the user provides a name and
type code:
tvm.datatype.register("bfloat", 129)

Datatypes
Registry

List of Types

Lowering Funcs

To register their datatype, the user provides a name and
type code:
tvm.datatype.register("bfloat", 129)

Datatypes
Registry

List of Types

Lowering Funcs

To register their datatype, the user provides a name and
type code:
tvm.datatype.register("bfloat", 129)

This allows TVM to parse programs which use the
datatype!

Datatypes
Registry

List of Types

Lowering Funcs

Datatypes
Registry

List of Types

Lowering Funcs

Users register lowering functions with a similar API:

Datatypes
Registry

List of Types

Lowering Funcs

Users register lowering functions with a similar API:

Datatypes
Registry

List of Types

Lowering Funcs

Users register lowering functions with a similar API:

tvm.datatype.register_op(

Datatypes
Registry

List of Types

Lowering Funcs

Users register lowering functions with a similar API:

tvm.datatype.register_op(
 lower_func, "Add", “llvm", “bfloat”)

Datatypes
Registry

List of Types

Lowering Funcs

Users register lowering functions with a similar API:

tvm.datatype.register_op(
 lower_func, "Add", “llvm", “bfloat”)

Datatypes
Registry

List of Types

Lowering Funcs

Users register lowering functions with a similar API:

tvm.datatype.register_op(
 lower_func, "Add", “llvm", “bfloat”)

This registers a lowering function which lowers bfloat Adds
when compiling to LLVM.

Datatypes
Registry

List of Types

Lowering Funcs

Users register lowering functions with a similar API:

tvm.datatype.register_op(
 lower_func, "Add", “llvm", “bfloat”)

This registers a lowering function which lowers bfloat Adds
when compiling to LLVM.

TVM will later use this lowering function when it spits out
code!

What do lowering functions look like?

Add

bfloat16 x bfloat16 y
?

What do lowering functions look like?

Add

bfloat16 x bfloat16 y
?

Lowering functions convert programs using custom datatypes into programs that native TVM can
understand and compile.

What do lowering functions look like?

Add

bfloat16 x bfloat16 y
?

Lowering functions convert programs using custom datatypes into programs that native TVM can
understand and compile.

In our case, we know our Add over bfloats should become a call to our bfloat library!

What do lowering functions look like?

Add

bfloat16 x bfloat16 y

Lowering functions convert programs using custom datatypes into programs that native TVM can
understand and compile.

In our case, we know our Add over bfloats should become a call to our bfloat library!

Call to
BFloat16Add

(call to external
library)

What do lowering functions look like?

Add

bfloat16 x bfloat16 y

Lowering functions convert programs using custom datatypes into programs that native TVM can
understand and compile.

In our case, we know our Add over bfloats should become a call to our bfloat library!

And the inputs? They can just be hidden in opaque unsigned integer types!

Call to
BFloat16Add

(call to external
library)

What do lowering functions look like?

Add

bfloat16 x bfloat16 y

Lowering functions convert programs using custom datatypes into programs that native TVM can
understand and compile.

In our case, we know our Add over bfloats should become a call to our bfloat library!

And the inputs? They can just be hidden in opaque unsigned integer types!

Call to
BFloat16Add

uint16_t x uint16_t y

(call to external
library)

What do lowering functions look like?

Add

bfloat16 x bfloat16 y

Lowering functions convert programs using custom datatypes into programs that native TVM can
understand and compile.

In our case, we know our Add over bfloats should become a call to our bfloat library!

And the inputs? They can just be hidden in opaque unsigned integer types!

We provide a helper function for creating this type of lowering function:

Call to
BFloat16Add

uint16_t x uint16_t y

(call to external
library)

What do lowering functions look like?

Add

bfloat16 x bfloat16 y

Lowering functions convert programs using custom datatypes into programs that native TVM can
understand and compile.

In our case, we know our Add over bfloats should become a call to our bfloat library!

And the inputs? They can just be hidden in opaque unsigned integer types!

We provide a helper function for creating this type of lowering function:
tvm.datatype.create_lower_func(“BFloat16Add")

Call to
BFloat16Add

uint16_t x uint16_t y

(call to external
library)

What do we want?

1. User makes or finds a custom datatype library which they’d like to use in
deep learning workloads

2. User gives TVM some information about the library

3. TVM compiles and runs programs which use the custom datatype,
handling the custom datatype by calling into the provided library

What do we have?
1. User makes or finds a custom datatype library which they’d like to use in

deep learning workloads

2. User gives TVM some information about the library

3. TVM compiles and runs programs which use the custom datatype,
handling the custom datatype by calling into the provided library

What do we have?

• Datatype name

1. User makes or finds a custom datatype library which they’d like to use in
deep learning workloads

2. User gives TVM some information about the library

3. TVM compiles and runs programs which use the custom datatype,
handling the custom datatype by calling into the provided library

What do we have?

• Datatype name

• Lowering functions—user just provides names of library functions!

1. User makes or finds a custom datatype library which they’d like to use in
deep learning workloads

2. User gives TVM some information about the library

3. TVM compiles and runs programs which use the custom datatype,
handling the custom datatype by calling into the provided library

Evaluation

To exercise the framework, I decided to conduct a preliminary evaluation of how a
model’s trained accuracy changes as we change the datatype.

To exercise the framework, I decided to conduct a preliminary evaluation of how a
model’s trained accuracy changes as we change the datatype.

We will first discuss the experiment itself and its results—then, we will reflect on
the utility of the framework.

Experiment Design

Experiment Design

1. Gathered a list of datatypes

Experiment Design

1. Gathered a list of datatypes

• TVM-native

Experiment Design

1. Gathered a list of datatypes

• TVM-native

• Hand-made

Experiment Design

1. Gathered a list of datatypes

• TVM-native

• Hand-made

• From GitHub

Experiment Design

1. Gathered a list of datatypes

• TVM-native

• Hand-made

• From GitHub

2. Pretrained models on the entire
CIFAR-10 training set (50k images,
10 classes) in float32 using PyTorch

Experiment Design

1. Gathered a list of datatypes

• TVM-native

• Hand-made

• From GitHub

2. Pretrained models on the entire
CIFAR-10 training set (50k images,
10 classes) in float32 using PyTorch

3. Converted the pretrained weights
to the custom datatypes.

Experiment Design

1. Gathered a list of datatypes

• TVM-native

• Hand-made

• From GitHub

2. Pretrained models on the entire
CIFAR-10 training set (50k images,
10 classes) in float32 using PyTorch

3. Converted the pretrained weights
to the custom datatypes.

• This was done without retraining

Experiment Design

1. Gathered a list of datatypes

• TVM-native

• Hand-made

• From GitHub

2. Pretrained models on the entire
CIFAR-10 training set (50k images,
10 classes) in float32 using PyTorch

3. Converted the pretrained weights
to the custom datatypes.

• This was done without retraining

4. Ran the models with the converted
datatypes over a sample of the
CIFAR-10 test set (100 images each)
using TVM

Datatypes:

https://github.com/stillwater-sc/universal
https://github.com/stillwater-sc/universal
https://github.com/cjdelisle/libposit
https://github.com/N-Dekker/biovault_bfloat16

Datatypes:

• TVM-native float32 (not using
the framework)

https://github.com/stillwater-sc/universal
https://github.com/stillwater-sc/universal
https://github.com/cjdelisle/libposit
https://github.com/N-Dekker/biovault_bfloat16

Datatypes:

• TVM-native float32 (not using
the framework)

• float32 (using the framework)

https://github.com/stillwater-sc/universal
https://github.com/stillwater-sc/universal
https://github.com/cjdelisle/libposit
https://github.com/N-Dekker/biovault_bfloat16

Datatypes:

• TVM-native float32 (not using
the framework)

• float32 (using the framework)

• Two implementations of posit8es0,
posit16es1, posit32es2:

• Stillwater Supercomputing’s
Universal library

• libposit

https://github.com/stillwater-sc/universal
https://github.com/stillwater-sc/universal
https://github.com/cjdelisle/libposit
https://github.com/N-Dekker/biovault_bfloat16

Datatypes:

• TVM-native float32 (not using
the framework)

• float32 (using the framework)

• Two implementations of posit8es0,
posit16es1, posit32es2:

• Stillwater Supercomputing’s
Universal library

• libposit

• Two implementations of bfloat16:

• My own “naive” implementation

• biovault-bfloat16: another
implementation from GitHub

https://github.com/stillwater-sc/universal
https://github.com/stillwater-sc/universal
https://github.com/cjdelisle/libposit
https://github.com/N-Dekker/biovault_bfloat16

Datatypes:

• TVM-native float32 (not using
the framework)

• float32 (using the framework)

• Two implementations of posit8es0,
posit16es1, posit32es2:

• Stillwater Supercomputing’s
Universal library

• libposit

• Two implementations of bfloat16:

• My own “naive” implementation

• biovault-bfloat16: another
implementation from GitHub

• “noptype”: always returns 0

https://github.com/stillwater-sc/universal
https://github.com/stillwater-sc/universal
https://github.com/cjdelisle/libposit
https://github.com/N-Dekker/biovault_bfloat16

Models:

• MobilenetV1

• Resnet50

Experiment Results and Evaluation

resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71

resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71

resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71

resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71

resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71

resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71

✅

✅

✅

✅

resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71

❌

❌

resnet accuracy mobilenet accuracy

float32 0.77 0.71

our bfloat16 0.08 0.11

biovault bfloat16 0.1 0.1

Universal posit8 0.08 0.1

Universal posit16 0.77 0.71

Universal posit32 0.77 0.71

libposit posit8 0.08 0.1

libposit posit16 0.77 0.71

libposit posit32 0.77 0.71

✅

✅

❌

❌

Same size!

Framework Evaluation

I wanted to evaluate three aspects of the framework:

I wanted to evaluate three aspects of the framework:

• Overhead

I wanted to evaluate three aspects of the framework:

• Overhead

• Ease of use

I wanted to evaluate three aspects of the framework:

• Overhead

• Ease of use

• Breadth of datatypes which can be used

Overhead

To measure overhead, I compared the inference time of three types:

To measure overhead, I compared the inference time of three types:

• TVM-native float32

To measure overhead, I compared the inference time of three types:

• TVM-native float32

• float32 implemented in the framework

To measure overhead, I compared the inference time of three types:

• TVM-native float32

• float32 implemented in the framework

• “noptype”: a custom type that does no work

mobilenet v1

mean inference time (s) framework overhead

native float32 0.10 1x

float32 0.12 1.11x

noptype 0.11 1.10x

resnet50

mean inference time (s) framework overhead

native float32 0.21 1x

float32 0.52 2.51x

noptype 0.28 1.35x

mobilenet v1

mean inference time (s) framework overhead

native float32 0.10 1x

float32 0.12 1.11x

noptype 0.11 1.10x

resnet50

mean inference time (s) framework overhead

native float32 0.21 1x

float32 0.52 2.51x

noptype 0.28 1.35x

mobilenet v1

mean inference time (s) framework overhead

native float32 0.10 1x

float32 0.12 1.11x

noptype 0.11 1.10x

resnet50

mean inference time (s) framework overhead

native float32 0.21 1x

float32 0.52 2.51x

noptype 0.28 1.35x

mobilenet v1

mean inference time (s) framework overhead

native float32 0.10 1x

float32 0.12 1.11x

noptype 0.11 1.10x

resnet50

mean inference time (s) framework overhead

native float32 0.21 1x

float32 0.52 2.51x

noptype 0.28 1.35x

mobilenet v1

mean inference time (s) framework overhead

native float32 0.10 1x

float32 0.12 1.11x

noptype 0.11 1.10x

resnet50

mean inference time (s) framework overhead

native float32 0.21 1x

float32 0.52 2.51x

noptype 0.28 1.35x

Main source of overhead: not in added computation, but in the compilation opportunity cost.

mobilenet v1

mean inference time (s) framework overhead

native float32 0.10 1x

float32 0.12 1.11x

noptype 0.11 1.10x

resnet50

mean inference time (s) framework overhead

native float32 0.21 1x

float32 0.52 2.51x

noptype 0.28 1.35x

Main source of overhead: not in added computation, but in the compilation opportunity cost.

• noptype is fairly low-overhead in both workloads → function calls don’t add too much

mobilenet v1

mean inference time (s) framework overhead

native float32 0.10 1x

float32 0.12 1.11x

noptype 0.11 1.10x

resnet50

mean inference time (s) framework overhead

native float32 0.21 1x

float32 0.52 2.51x

noptype 0.28 1.35x

Main source of overhead: not in added computation, but in the compilation opportunity cost.

• noptype is fairly low-overhead in both workloads → function calls don’t add too much

• float32 is low-overhead in Mobilenet, which is optimized for low total float ops

mobilenet v1

mean inference time (s) framework overhead

native float32 0.10 1x

float32 0.12 1.11x

noptype 0.11 1.10x

resnet50

mean inference time (s) framework overhead

native float32 0.21 1x

float32 0.52 2.51x

noptype 0.28 1.35x

Main source of overhead: not in added computation, but in the compilation opportunity cost.

• noptype is fairly low-overhead in both workloads → function calls don’t add too much

• float32 is low-overhead in Mobilenet, which is optimized for low total float ops

• …but float32 is high-overhead in ResNet → native float32 ResNet much more optimized!

Ease of Use

By the Numbers…

By the Numbers…
To use libposit posit32 in Mobilenet and ResNet…

By the Numbers…
To use libposit posit32 in Mobilenet and ResNet…

• A total of 12 operators needed to be implemented, taking about 70 lines of C++ in a
wrapper library.

By the Numbers…
To use libposit posit32 in Mobilenet and ResNet…

• A total of 12 operators needed to be implemented, taking about 70 lines of C++ in a
wrapper library.

• Operators including casts to/from posits, add/sub/mul/div, more complex math
operators like exp, and comparators like max.

By the Numbers…
To use libposit posit32 in Mobilenet and ResNet…

• A total of 12 operators needed to be implemented, taking about 70 lines of C++ in a
wrapper library.

• Operators including casts to/from posits, add/sub/mul/div, more complex math
operators like exp, and comparators like max.

• In the 150-line Python script which runs ResNet50 with posit32,

By the Numbers…
To use libposit posit32 in Mobilenet and ResNet…

• A total of 12 operators needed to be implemented, taking about 70 lines of C++ in a
wrapper library.

• Operators including casts to/from posits, add/sub/mul/div, more complex math
operators like exp, and comparators like max.

• In the 150-line Python script which runs ResNet50 with posit32,

• 57 lines register the datatype and define lowering functions for the 12 operators,

By the Numbers…
To use libposit posit32 in Mobilenet and ResNet…

• A total of 12 operators needed to be implemented, taking about 70 lines of C++ in a
wrapper library.

• Operators including casts to/from posits, add/sub/mul/div, more complex math
operators like exp, and comparators like max.

• In the 150-line Python script which runs ResNet50 with posit32,

• 57 lines register the datatype and define lowering functions for the 12 operators,

• 3 lines convert the model to posit32,

By the Numbers…
To use libposit posit32 in Mobilenet and ResNet…

• A total of 12 operators needed to be implemented, taking about 70 lines of C++ in a
wrapper library.

• Operators including casts to/from posits, add/sub/mul/div, more complex math
operators like exp, and comparators like max.

• In the 150-line Python script which runs ResNet50 with posit32,

• 57 lines register the datatype and define lowering functions for the 12 operators,

• 3 lines convert the model to posit32,

• 3 lines convert the input, run the model, and convert the output.

How could we improve?

How could we improve?

• Allow the user to specify their own calling convention, removing the need for a
wrapper over the library

How could we improve?

• Allow the user to specify their own calling convention, removing the need for a
wrapper over the library

• Implement cleaner registration functions in the TVM Python frontend

Breadth of Datatypes

Breadth of Datatypes

Breadth of Datatypes

We were able to successfully represent a small sample of modern datatypes!

Breadth of Datatypes

We were able to successfully represent a small sample of modern datatypes!

Questionable whether current BYOD can represent…

Breadth of Datatypes

We were able to successfully represent a small sample of modern datatypes!

Questionable whether current BYOD can represent…

• Block floating point, or any other type with “external” state

Breadth of Datatypes

We were able to successfully represent a small sample of modern datatypes!

Questionable whether current BYOD can represent…

• Block floating point, or any other type with “external” state

• Datatypes with elements larger than 64 bits

Breadth of Datatypes

We were able to successfully represent a small sample of modern datatypes!

Questionable whether current BYOD can represent…

• Block floating point, or any other type with “external” state

• Datatypes with elements larger than 64 bits

Could potentially be implemented by allowing datatypes to attach metadata to each
scalar

Future Work

Future Work

• Training in TVM—ramifications for custom datatypes?

Future Work

• Training in TVM—ramifications for custom datatypes?

• Improve performance

Future Work

• Training in TVM—ramifications for custom datatypes?

• Improve performance

• Enable inlining of LLVM

Future Work

• Training in TVM—ramifications for custom datatypes?

• Improve performance

• Enable inlining of LLVM

• Allow users to supply optimized kernels for higher-level operators, e.g. posit
conv2d

Future Work

• Training in TVM—ramifications for custom datatypes?

• Improve performance

• Enable inlining of LLVM

• Allow users to supply optimized kernels for higher-level operators, e.g. posit
conv2d

• Tackle complex datatypes like block floating point

In conclusion, I have presented the Bring Your Own Datatypes framework.

In conclusion, I have presented the Bring Your Own Datatypes framework.

In conclusion, I have presented the Bring Your Own Datatypes framework.

I have shown how the framework can enable useful datatype research.

Thank You!

Extra Slides

Registering the Datatype

✅ Any loaded C-linkage functions will work!

Registering the Datatype

✅ Helper functions for common-case

✅ Any loaded C-linkage functions will work!

Registering the Datatype

Implementing the Datatype

❌ Inflexible calling convention

Implementing the Datatype

Converting the Program

✅ Changing datatype of
a program is easy!

Converting the Program

Running the Program

✅ Converting data is also easy!

Running the Program

✅ Converting data is also easy!

❌ Have to manually disable vectorization

Running the Program

Flexpoint

Fraction

Fraction

…

Exponent

Exponent

See Köster et. al., “An Adaptive Numerical Format for Efficient Training of Deep Neural Networks”

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Flexpoint

Fraction

Fraction

…

Exponent

Exponent

See Köster et. al., “An Adaptive Numerical Format for Efficient Training of Deep Neural Networks”

Similar magnitude → similar exponents

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Flexpoint

Fraction

Fraction

…

Shared
Exponent

See Köster et. al., “An Adaptive Numerical Format for Efficient Training of Deep Neural Networks”

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Flexpoint

Fraction

Fraction

…

Shared
Exponent

See Köster et. al., “An Adaptive Numerical Format for Efficient Training of Deep Neural Networks”

Error Tracking

…

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Accelerator Host (CPU)

Flexpoint

Fraction

Fraction

…

Shared
Exponent

See Köster et. al., “An Adaptive Numerical Format for Efficient Training of Deep Neural Networks”

Error Tracking

…

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

Accelerator Host (CPU)

Flexpoint

Fraction

Fraction

…

Shared
Exponent

See Köster et. al., “An Adaptive Numerical Format for Efficient Training of Deep Neural Networks”

Error Tracking

…

Just integers! We can use integer hardware!

https://papers.nips.cc/paper/6771-flexpoint-an-adaptive-numerical-format-for-efficient-training-of-deep-neural-networks.pdf

