Glenside

Partitioning Deep Learning Hardware and Software

Gus Smith, University of Washington
PL/Arch External Talk Series @ CAPRA, May 27th, 2020

Who?

» 2nd year at UW working in PL/

Arch with Zach Tatlock/Luis
Ceze

e Interested in how we can

advance architecture w/ PL
techniques

I WIP /!

Architects
accelerate deep
learning with
custom hardware.

Architects EERTA BN

Share

accelerate deep m Bummamache s o

TWEET Centers

learning with o
custom hardware.

..out designing deep
learning stacks is complex!

In-Datacenter Performance Analysis of a Tensor Processing Unit""

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell,
Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek
Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray N1, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma,
Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon
Google, Inc., Mountain View, CA USA
Email: {jouppi, cliffy, nishantpatil, davidpatterson} @google.com

To appear at the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 26, 2017.

TensorKlow:

Large-Scale Machine Learning on Heterogeneous Distributed Systems
(Preliminary White Paper, November 9, 2015)

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,

Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng
Google Research*

— An Oversimplified View of HW-SW stack design

— An Oversimplified View of HW-SW stack design

/

(hardware engineers)

— An Oversimplified View of HW-SW stack design

— ~—

(hardware engineers) (software engineers)

— An Oversimplified View of HW-SW stack design

Workloads
/ We need matrix \
multiplication!

(hardware engineers) (software engineers)

— An Oversimplified View of HW-SW stack design

Workloads
We need matrix \
multiplication!
(hardware engineers) [Wecanbuilditt Andwe'll '\ (gott\vare engineers)
build ReLU, why not?

— An Oversimplified View of HW-SW stack design

Workloads

We need matrix \
multiplication!

(hardware engineerszwe canbuilditt Andwe'll '\ (goftware engineers)

build ReLU, why not?

.we'll figure out
how to use it!

— An Oversimplified View of HW-SW stack design

Workloads

We need matrix \
multiplication!

(hardware engineerszwe canbuilditt Andwe'll '\ (goftware engineers)

* build ReLU, why not?

.we'll figure out
Hardware
how to use it!

Intrinsics

— An Oversimplified View of HW-SW stack design

Workloads

We need matrix \
multiplication!
(hardware engineers) [Wecanbuilditt Andwe'll '\ (gott\vare engineers)
* build ReLU, why not? *

..we'll figure out
Hardware .
how to use it! :
Compiler Passes

Intrinsics

Kernels

— An Oversimplified View of HW-SW stack design

Workloads

We need matrix \
multiplication!
(hardware engineers) [Wecanbuilditt Andwe'll \ (gott\vare engineers)
* build ReLU, why not? *

..we'll figure out
Hardware .
how to use it! :
Compiler Passes

Intrinsics

Kernels

— An Oversimplified View of HW-SW stack design

Workloads This system makes sense
because chips and
— We need matriy NS compilers are massive
< multiplication! } projects.

(hardware engineers) [Wecanbuilditt Andwe'll \ (gott\vare engineers)
* build ReLU, why not? *

..we'll figure out
Hardware .
how to use it! :
Compiler Passes

Intrinsics

Kernels

— An Oversimplified View of HW-SW stack design

(hardware engineerszw

v

Hardware

Intrinsics

Workloads

We need matrix

multiplication!

e can build it! And we'l
build ReLU, why not?

.

..we'll figure ou
how to use it!

)

b
D

software engineers)

v

Compiler Passes

Kernels

This system makes sense
because chips and
compilers are massive
projects.

...but we can’t help but
notice the inefficiencies!

— An Oversimplified View of HW-SW stack design

(hardware engineerszw

v

Hardware

Intrinsics

Workloads

We need matrix

multiplication!

e can build it! And we'l
build ReLU, why not?

.

..we'll figure ou
how to use it!

)

b
D

software engineers)

v

Compiler Passes

Kernels

This system makes sense
because chips and
compilers are massive
projects.

...but we can’t help but
notice the inefficiencies!

e Slow

— An Oversimplified View of HW-SW stack design

(hardware engineerszw

v

Hardware

Intrinsics

Workloads

We need matrix

multiplication!

e can build it! And we'l
build ReLU, why not?

.

..we'll figure ou
how to use it!

)

b
D

software engineers)

v

Compiler Passes

Kernels

This system makes sense
because chips and
compilers are massive
projects.

...but we can’t help but
notice the inefficiencies!

e Slow

e Misses design points

— An Oversimplified View of HW-SW stack design

Workloads This system makes sense
because chips and
— We need matrix NS compilers are massive
< multiplication! } projects.

)
(hardware engineers) (. Wecanbuild it And we'll ™\ (software engineers) ...bqt we can L h.el.P bqt '
| build ReLU, why not? } notice the inefficiencies!
e Slow

..we'll figure out
Hardware (how to use it! j : . . .
Intrinsics emiEgEey © Misses design points

* Design knowledge is
lost in communication!

Kernels

Why not design the
hardware and software at
the same time?

— A Hardware-Software Codesign Approach

— A Hardware-Software Codesign Approach

v

— A Hardware-Software Codesign Approach

v (automatic codesigner)

— A Hardware-Software Codesign Approach

v (automatic codesigner)
| see a 16x16 vector-
matrix multiplication...

— A Hardware-Software Codesign Approach

v (automatic codesigner)
| see a 16x16 vector—
matrix mUltlplICé\thn 7 | see a 16x32 vector- >

matrix multiplication..

— A Hardware-Software Codesign Approach

automatic codesigner)

v
| see a 16x16 vector—
matrix multiplication... | see g 16x32 vector— >

matrix multiplication..

——

/ | see a 40x102 fused

vector-matrix multiplication/

\ RelLU... /

— A Hardware-Software Codesign Approach

Workloads

v (automatic codesigner)
| see a 16x16 vector-
matrix multiplication... 7 | see g 16X32 vector—

ow best to use them:)

_ matrix multiplication..>
/ | see a 40x102 fused (

vector-matrix multiplication/ ..and | already know

\ ReLU... / h

— A Hardware-Software Codesign Approach

Workloads

v (automatic codesigner)
| see a16x16 vector-
matrix multiplication... 7 | see g 16x32 vector— >

matrix multiplication..
/ | see a 40x102 fused 7(

vector-matrix multiplication/ ..and | already know
k RelLU... // \ how best to use them:)

Hardware

Kernels Compiler Passes

Intrinsics

...this is not a new idea. Hardware—software codesign is a dream that people
have had for some time.

...this is not a new idea. Hardware—software codesign is a dream that people
have had for some time.

Hardware—software codesign often raises a healthy amount of skepticism due
to its meager success in the past.

...this is not a new idea. Hardware—software codesign is a dream that people
have had for some time.

Hardware—software codesign often raises a healthy amount of skepticism due
to its meager success in the past.

One of the primary issues is that the space of potential hardware-software
designs is massive!

— A Hardware-Software Codesign Approach

— A Hardware-Software Codesign Approach

v (automatic codesigner)

— A Hardware-Software Codesign Approach

v (automatic codesigner)
| see a 16x16 vector-
matrix multiplication...

— A Hardware-Software Codesign Approach

* (automatic codesigner)
g
| see a 16x16 vector—
matrix multiplication ﬁ ..or | could split it into 8x8...)

— A Hardware-Software Codesign Approach

(automatic codesigner)
| see a 16x16 vector-
...or | could splititinto 8x8...
matrix multiplication...

. Or 4x4...

— A Hardware-Software Codesign Approach

(automatic codesigner)
| see a 16x16 vector-
..or | could split it into 8x8...
matrix multiplication...
V

..orwhatifl used a)

. Or 4x4...

16x8 and two 8x8s?

_ /

— A Hardware-Software Codesign Approach

(automatic codesigner)
| see a 16x16 vector-
..or | could split it into 8x8...
matrix multiplication...

N ..orwhatifl used a)

16x8 and two 8x8s?

_ J
(...and then | could fuseﬁ

of these with a ReLU...
_ J

. Or 4x4...

— A Hardware-Software Codesign Approach

Workloads

(automatic codesigner)
| see a 16x16 vector-
..or | could split it into 8x8...
matrix multiplication...

N ..orwhatifl used a)

16x8 and two 8x8s?

_ J
(...and then | could fuseﬁ

| .no, I'll just make)
_ of these with a ReLU... y them all 1x1s!!!

- /

. Or 4x4...

— A Hardware-Software Codesign Approach

Workloads

(automatic codesigner)
| see a 16x16 vector-
..or | could split it into 8x8...
matrix multiplication...

..orwhatifl used a)

16x8 and two 8x8s?

\ /
(..and then I could fuseﬁ >

.no, I'll just make)
of these with a ReLU... /

. Or 4x4...

_) them all 1x1s!!!

_ /
 TOOMANY

OPTIONS!!
_ /

— A Hardware-Software Codesign Approach

Workloads

(automatic codesigner)
| see a 16x16 vector-
..or | could split it into 8x8...
matrix multiplication...

..orwhatifl used a)

16x8 and two 8x8s?

\ /
(..and then I could fuseﬁ >

.no, I'll just make)
of these with a ReLU... /

. Or 4x4...

_) them all 1x1s!!!

_ /
 TOOMANY

OPTIONS!!
_ /

— A Hardware-Software Codesign Approach

Workloads

(automatic codesigner)
g
| see a 16x16 vector—
matrix multiplication ...or | could splititinto 8x8...)

...or what if | used a)
16x8 and two 8x8s?
/

(...OF 4X4...)7
4 and then | could fuseﬁ

ey

..no, I'll just make)
of these with a ReLU...
them all 1x1s!!
- / / N Y
/ TOO MANY \
OPTIONS!I

_ /

— A Hardware-Software Codesign Approach

Workloads

“ (automatic codesigner)
| see a 16x16 vector- ol
matrix multiplication... @ ~-orlcould splititinto 8x8..)

...or what if | used a)
16x8 and two 8x8s?
/

(...OF 4X4...)7
(...and then | could fuseﬁ

of these with a ReLU... /

ey

..no, I'll just make)
them all 1x1s!!!
Y

_ /

4 TOO MANY)

OPTIONS!!
_ /

-

If only we had a tool for
representing massive
search spaces!

@ Usiing E-Graphs tor Optimization
with egg

Max Willsey
= github.com/muwillsey/egg B

Remy Wang Chandrakana Nandi Oliver Flatt
Pavel Panchekha Zach Tatloek

Rewriting

x*2 =p xic<|

((x*y)*2] > (xtiy =l

(a*2)/ 2

x/ x = l

*

X

* *

XY

v

...........

- e E .,

.............................

.........

.........

...........

...........

@ E-Graphe Never Forget

- ..,

(a*2)/ 2

and R |

(a>>1)/2 5 |
: >> |
are represented ; . . '

E-Graphe are Compaat

- ..,

eclass sizes g
81, 82, 83... (D) E

E-Graphs Can Saturate

- ..,

T e e R

@ E quality Saturation

initial term egraph — best term

(rewrﬂe rul;>

Herbie

Uses E-Graphs to simplify expressions

Total speed up: 2.77 x wWERB/A
A
Simplify speed up: 5-60x ®—20

Better regults!

facetnormal 000
outer oop
vertiex9 150
vertex 7.5 17.5064 4
vertex 7.5 17.5064 0
endioop
endfacet
facet nomal 000
outer oop
vertex 7.5 17.5064 4
vertex9 150
vertex 9 15 4
endioop
endiacet
facet normal 0 0 0
outer loop
vertex 4.5 17.5064 0
vertex 7.5 17.5064 4
vertex 4.5 17.5064 4
endioop
endfacet

~1600 LOC, Mesh

Speed up >1000x

W J9|Idwooep ysew v

CAD Simplification

(Dt
(Translate (70 15 2)
(Scale (140 30 4)
(Transiate (-0.5 0.5 -0.5)
(Cuboid (1 1 1)
Union
(Translate (6 15 2)
(Scale (6 5.196 4)
(Translate 00 0)
(Scale 0.50577 1)
HexPrism (1 1))
(Translate (125 15 2)
(Scale (20 17.32 4)
(Translate (D0 0)
(Scale 0.50577 1)
(Hex®Prism (1 1))
(Translate (102 15 2)
(Scale (18 15.588 4)
(Translate 00 0)
(Scale 0.50577 1)
(Hex®rism (1 1))
(Translate (81 15 2)
(Scale (16 13.856 4)

~ 80 LOC, CSG

(Difference

(Fold Union

(Cuboid [140, 30, 4))

(Tabulate (i 8)
(Translate [i* + 10i + 6, 15, 2]
(HexPrism [i + 3, 4])))

+ + (Cuboid [140, 30, 4)
' * (Fold Union

.. (Tabulate (i 4) :
(Translate [i* + 38i + 6, 15, 2]

(Cuboid [140, 30, 4])

+ (Fold Union
(Tabulate (i 8)
(Translate [iZ + 10i + 6, 15, 2] :

(Cylinder (i + 3, 4]))

6 LOC, Caddy

. !(Difference

+ * (Cuboid [140, 30, 4)

: + (Fold Union

(Translate

Enabled a whole new set of techniques

Discovered a new way on interacting with e-graphs

.............................

' + (Cuboid [140, 30, 4))

: + (Fold Union
(Tabulate (1 10) '
(Translate [i* + 10i + 6, 15, 2] |

(HexPrism (({+3) /2, 4])))

@ Linear Algebra Optimization

Baged on Apache SystemML
Replace the optimization of LA expressions with E-Graph
E xtraction aware of dengity/memory-usage

[.2x - 5x better results

@ Usiing E-Graphs tor Optimization
with egg

Max Willsey
= github.com/muwillsey/egg B

Remy Wang Chandrakana Nandi Oliver Flatt
Pavel Panchekha Zach Tatloek

Why egraphs?

Why egraphs?

Fundamentally, this is a problem of generating many equivalent programs —
perfect for egraphs!

Why egraphs?

Fundamentally, this is a problem of generating many equivalent programs —
perfect for egraphs!

However, in our case, “programs” will simultaneously represent both
hardware and software!

Why egraphs?

Fundamentally, this is a problem of generating many equivalent programs —
perfect for egraphs!

However, in our case, “programs” will simultaneously represent both
hardware and software!

Rewrites over our programs then become a natural way to represent changing
the partition between hardware and software!

Glenside’s goal:
For a given deep learning workload,
efficiently explore the massive space
of accelerator designs using egraphs.

Glenside Design

How Glenside Works

How Glenside Works

Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

How Glenside Works

Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation

How Glenside Works

Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation

2. Run rewrites until saturation or timeout

How Glenside Works

Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation
2. Run rewrites until saturation or timeout

- Software - software

How Glenside Works

Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation
2. Run rewrites until saturation or timeout
- Software - software

- Software - hardware

How Glenside Works

Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation
2. Run rewrites until saturation or timeout

- Software - software

- Software -» hardware

3. Extract hardware—software program from egraph

How Glenside Works

Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation
2. Run rewrites until saturation or timeout
- Software - software
- Software -» hardware
3. Extract hardware—software program from egraph

/.. Separate hardware—software program into hardware description and software
schedule

— How Glenside Works

Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation

2. Run rewrites until saturation or timeout
- Software - software

- Software - hardware

3. Extract hardware—software program tfrom egraph

/.. Separate hardware—software program into hardware description and software
schedule

— Our Workload: Vector-Matrix Multiply

o
o
.
a, 1x32 : c, 1x32
[e0ccccccccece] x o b, 32x32 e 1]
o
o
o
o
o

— Our Workload: Vector-Matrix Multiply

°
°
°
°
ad X C X
, 1X32 . , 1X32
[0cecccccccce] o b, 32x32 [
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°

— Our Workload: Vector-Matrix Multiply

o
o
o
o
a, 1x32 : c, 1x32
[e0ccccccccece] x o b, 32x32 e 1]

o
o
o
o
o

X @

X @

o

. e

o

o

o

o

o

o

o

X @

X @

— Our Workload: Vector-Matrix Multiply

°
°
®
°
a, 1x32 : c, 1x32
[e0ccccccccece] x o b, 32x32 e 1

®
®
®
®
®

X @& —e

X @ =@

e o

: 0 . 0

e o

e o

e o

e o

e o

e o

e o

X @ =@

X @ =@

— Our Workload: Vector-Matrix Multiply

°
°
®
°
a, 1x32 : c, 1x32
[e0ccccccccece] x o b, 32x32 = O
®
®
®
®
®
X @& —e
X @ =@
e o
: 0 . 0
e o
e o
® O Sum
e o
e o
e o
e o
X @ =@
X @ =@

— Our Workload: Vector-Matrix Multiply

°
°
®
°
a, 1x32 : c, 1x32
[e0ccccccccece] x o b, 32x32 = O
®
®
®
®
®
X @& —e
X @ =@
e o
: 0 . 0
e o
e o
o osumzl
e o
e o
e o
e o
X @ =@
X @ =@

How do we represent
vector—matrix
multiplication in an egraph?

Egraph Representation

Egraph Representation

The power of egraphs comes from their grouping of equivalent program nodes
(enodes) into the same equality class (eclass).

Egraph Representation

The power of egraphs comes from their grouping of equivalent program nodes
(enodes) into the same equality class (eclass).

For this to be possible, we need a representation where every node has a value

and there are no side-effects, so that equivalent nodes can be swapped for one
another (referential transparency).

(vec-mat-mult a b) :=
(map-dot-product

(cartesian-product a (cols b))

)

— Egraph Representation

(map-dot-product
(cartesian-product

d

(cols b)

)
)

(cols

b, 32x32

32x32

— Egraph Representation

(map—dOt—prOduct . 0000000000000
(cartesian-product ®0cccccccccee)
(cartesian-product cecccccccccee

a 0000000000000

(cols b)

)
)

[
Z@

ee00000 C,

N\
»

—
Zd’

1x32x(2x32)

/‘D‘Q\“

N\

-
0000000000000 CO

N’

— Egraph Representation

0]

%

e0e00000 C

N’

(map-dot-product (,E
(cartesian-product (map-dot-product [EEZZiiigggiE\\\i
a
(cols b) _

)
) 1

1x32

N\

-
0000000000000 CO
N’

‘s

Hardware Atoms

Hardware Atoms

Hardware atoms are small hand-designed units which we compose to build a
hardware design.

Hardware Atoms

Hardware atoms are small hand-designed units which we compose to build a
hardware design.

Each hardware atom is paired with a functional description which we can use to
map it in to the workload.

Our Atom: Systolic Array

Our Atom: Systolic Array

A systolic array is one way to implement vector—matrix multiplication in
hardware.

Our Atom: Systolic Array

A systolic array is one way to implement vector—matrix multiplication in
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the
TPU!)

— Our Atom: Systolic Array

A systolic array is one way to implement vector—matrix multiplication in
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the
TPU!)

We describe its functional behavior with a rewrite:

— Our Atom: Systolic Array

A systolic array is one way to implement vector—matrix multiplication in
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the
TPU!)

We describe its functional behavior with a rewrite:

(map-dot-product

— Our Atom: Systolic Array

A systolic array is one way to implement vector—matrix multiplication in
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the
TPU!)

We describe its functional behavior with a rewrite:

map-dot-product
(d d
(cartesian-product x{1xN vector} (cols y{NxM tensor})))

— Our Atom: Systolic Array

A systolic array is one way to implement vector—matrix multiplication in
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the
TPU!)

We describe its functional behavior with a rewrite:

(map-dot-product

(cartesian-product x{1xN vector} (cols y{NxM tensor})))
=> (systolic-array N M x y)

Codesigning a Vector-

Matrix Multiply

Goal: explore hardware—software implementations of

Goal: explore hardware—software implementations of

(map-dot-product

Goal: explore hardware—software implementations of
(map-dot-product

(cartesian-product a{1x32}

Goal: explore hardware—software implementations of
(map-dot-product

(cartesian-product a{1x32}

(cols b{32x32})))

Goal: explore hardware—software implementations of
(map-dot-product
(cartesian-product a{1x32}
(cols b{32x32})))

Using the atom library composed of:

Goal: explore hardware—software implementations of
(map-dot-product
(cartesian-product a{1x32}
(cols b{32x32})))
Using the atom library composed of:

(systolic-array N M x vy)

Goal: explore hardware—software implementations of
(map-dot-product
(cartesian-product a{1x32}
(cols b{32x32})))
Using the atom library composed of:
(systolic-array N M x vy)
Where N,M = 16 or 32.

map-dot-product
cartesian—-product

We have:
(map-dot-product

(cartesian-product a{1x32}
(cols b{32x32})))

map-dot-product
cartesian—-product

map-dot-product
cartesian—-product

To explore hardware—software splits, we want to find places where we
can introduce our hardware atom:

map-dot-product
cartesian—-product

To explore hardware—software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product

map-dot-product
cartesian—-product

To explore hardware—software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product
(cartesian-product x{1xN vector} (cols y{NxM tensor})))

map-dot-product
cartesian—-product

To explore hardware—software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product
(cartesian-product x{1xN vector} (cols y{NxM tensor})))
=> (systolic-array N M x y)

map-dot-product
cartesian—-product

systolic-array 32 32

®3ZX32

To explore hardware—software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product
(cartesian-product x{1xN vector} (cols y{NxM tensor})))
=> (systolic-array N M x y)

map-dot-product
cartesian—-product

systolic-array 32 32

We can already map in one
systolic array...but we want

to explore other designs!

To explore hardware—software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product
(cartesian-product x{1xN vector} (cols y{NxM tensor})))

=> (systolic-array N M x y)

map-dot-product
cartesian-product

map-dot-product
cartesian-product

map-dot-product
cartesian-product

map-dot-product
cartesian-product

map-dot-product map-dot-product
cartesian-product cartesian-product

We use rewrites to expose
places where hardware can
be mapped in!

First Rewrite: Splitting

First Rewrite: Splitting

First Rewrite: Splitting

First Rewrite: Splitting

+

First Rewrite: Splitting

+

First Rewrite: Splitting

a => (concat (slice a ...) (slice a ...))

First Rewrite: Splitting

a => (concat (slice a ...) (slice a ...))

First Rewrite: Splitting

a => (concat (slice a ...) (slice a ...))

First Rewrite: Splitting

I E N
= + = +

a => (concat (slice a ...) (slice a ...))

First Rewrite: Splitting

map-dot-product

cartesian—-product

map-dot-product
cartesian—-product

T =
@%@}@

map-dot-product
cartesian—-product

T S
T

map-dot-product
cartesian—-product

T T
Sk

map-dot-product
cartesian—-product

T
Sk

map-dot-product

cartesian—-product

map-dot-product
cartesian—-product

€ e

(let’s keep this graph simple!)

map-dot-product
cartesian—-product

€ e

Recall what we’re looking for:

£5

Recall what we’re looking for:
Vector—matrix multiplications
of different sizes!

£5

Recall what we’re looking for:
Vector—matrix multiplications
of different sizes!

CHENCD
@(@ Coneay
D @Ee

Coop-sot-product))
AL O

/1 ° cartesian-product
[

@S G
(277) 16x16

N

Recall what we’re looking for:

it ?
Vector—matrix multiplications
of different sizes!

CHENCD
@(@ Coneay

D @Ee

Coop-sot-product))

AL O

/1 ° cartesian-product
[

s @S
(277) 16x16

We won’t find them here...the
concats are “hiding” the
tensor slices!

€ e

We won’t find them here...the
concats are “hiding” the
tensor slices!

O EDI®
O

We won’t find them here...the
concats are “hiding” the
tensor slices!

O @
O

We won’t find them here...the
concats are “hiding” the
tensor slices!

©

We won'’t find them here...the
concats are “hiding” the

tensor slices!

Can we move the concats
somehow?

lx32 @

O

|

’ A
,/ map-dot-product E

[]
|
|
1
| [
' cartesian—-product
|
| |

We won'’t find them here...the

concats are “hiding” the
tensor slices!

Can we move the concats
somehow?

map-dot-product
cartesian—-product

€ e

map-dot-product
cartesian—-product

£ S

egg::rewrite! ("bubble-concat-through-cols";
"(cols (concat a b))"
=> "(concat (cols a) (cols b))")

map-dot-product
cartesian—-product

@t? E}:

map-dot-product

cartesian-product cartesian—-product

map-dot-product map-dot-product

cartesian—-product

cartesian-product

systolic—-array systolic-array

concat

systolic-array systolic-array
16 16 16 16

D S Y From this, we can extract a hardware
description and software schedule.

(our next step!)

Early Results

— Early Results

.parse ()
.unwrap() ;

Early Results

ec! [

s sShlE 0, A ;

S ShiLE (] " .
::collapse_nested_slices(),

: :bubble_concat_through_rows_axis_0(),
: :bubble_concat_through_rows_axis_1(),
: :bubble_concat_through_cols_axis_0(),
: :bubble_concat_through_cols_axis_1(),

S bubblel concatithEolgh cartesian nrodlcE Mot lastiaxaisi e fE ()
: :bubble_concat_through_cartesian_product_not_Llast_axis_right(),
: :bubble_concat_through_cartesian_product_Llast_axis(),

: :bubble_concat_through_map_dot_product_not_last_axis(),

L blibblleficoncaitith FolghEmapideitibliEodict=la s ianel S ()

s ssystollic arEavave ol imatiEixd(E)

.parse ()
.unwrap() ;

Early Results

ec! [
s sShlE 0, A ;
S ShiLE (] " .
::collapse_nested_slices(),
: :bubble_concat_through_rows_axis_0(),
: :bubble_concat_through_rows_axis_1(),
: :bubble_concat_through_cols_axis_0(),
: :bubble_concat_through_cols_axis_1(),
S bubblel concatithEolgh cartesian nrodlcE Mot lastiaxaisi e fE ()
: :bubble_concat_through_cartesian_product_not_Llast_axis_right(),
: :bubble_concat_through_cartesian_product_Llast_axis(),
.parse () : :bubble_concat_through_map_dot_product_not_last_axis(),
L blibblleficoncaitith FolghEmapideitibliEodict=la s ianel S ()

unwrapi() s :]
PL)) : :systolic_array_vector_matrix)

| . >t s from_expr (&program) ;
r:new() .with_egraph(egraph) .run(&rws) ;

.parse: :<

.unwrap (
.search_eclass(&runner.egraph, 1d

. expect(

.parse::

.unwrap (
.search_eclass(&runner.egraph, 1d

. expect(

bsg_systolic-array|

.parse: :<
.unwrap (
.search_eclass(&runner.egraph, 1d

.expect(

psg-systolic-array]

.parse: :<
.unwrap (
.search_eclass(&runner.egraph, 1d

. expect(

.parse: :<

.unwrap (
.search_eclass(&runner.egraph, 1d

. expect(

Wrapping Up

Wrapping Up

e Initial success of this first experiment is promising!

Wrapping Up

e Initial success of this first experiment is promising!

e Many questions left to be answered

Wrapping Up

e Initial success of this first experiment is promising!
e Many questions left to be answered

- Will this representation of tensor programs continue to work?

Wrapping Up

e Initial success of this first experiment is promising!
e Many questions left to be answered
- Will this representation of tensor programs continue to work?

- How do we pull a “compiler” out of an egraph?

Wrapping Up

e Initial success of this first experiment is promising!

e Many questions left to be answered
- Will this representation of tensor programs continue to work?
- How do we pull a “compiler” out of an egraph?

- How to implement a complex, multi-objective extraction process?

Wrapping Up

e Initial success of this first experiment is promising!
e Many questions left to be answered
- Will this representation of tensor programs continue to work?
- How do we pull a “compiler” out of an egraph?
- How to implement a complex, multi-objective extraction process?

- How to represent hardware sharing?

T em g Ry

A

- o Ngiejansgansgnns
gaaagaampul
Basgsnatio§

wwa
* » e LT BT B
o 8
.l!.luunpmn-u
'

sanpa

sampl

PLSE $

-\

.0
D
LWO
1L
< 10O
A <CTWU

Thank you!

https://github.com/gussmith23/glenside
https://justg.us

https://github.com/gussmith23/glenside
https://justg.us

