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..out designing deep
learning stacks is complex!
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Why not design the
hardware and software at
the same time?
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...this is not a new idea. Hardware—software codesign is a dream that people
have had for some time.

Hardware—software codesign often raises a healthy amount of skepticism due
to its meager success in the past.

One of the primary issues is that the space of potential hardware-software
designs is massive!
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If only we had a tool for
representing massive
search spaces!
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Herbie

Uses E-Graphs to simplify expressions

Total speed up: 2.77 x wWERB/A
A
Simplify speed up: 5-60x ®—20

Better regults!



facetnormal 000
outer oop
vertiex9 150
vertex 7.5 17.5064 4
vertex 7.5 17.5064 0
endioop
endfacet
facet nomal 000
outer oop
vertex 7.5 17.5064 4
vertex9 150
vertex 9 15 4
endioop
endiacet
facet normal 0 0 0
outer loop
vertex 4.5 17.5064 0
vertex 7.5 17.5064 4
vertex 4.5 17.5064 4
endioop
endfacet

~1600 LOC, Mesh

Speed up >1000x

W J9|Idwooep ysew v

CAD Simplification

(Dt
(Translate (70 15 2)
(Scale (140 30 4)
(Transiate (-0.5 0.5 -0.5)
(Cuboid (1 1 1)
Union
(Translate (6 15 2)
(Scale (6 5.196 4)
(Translate 00 0)
(Scale 0.50577 1)
HexPrism (1 1))
(Translate (125 15 2)
(Scale (20 17.32 4)
(Translate (D0 0)
(Scale 0.50577 1)
(Hex®Prism (1 1))
(Translate (102 15 2)
(Scale ( 18 15.588 4)
(Translate 00 0)
(Scale 0.50577 1)
(Hex®rism (1 1))
(Translate (81 15 2)
(Scale (16 13.856 4)

~ 80 LOC, CSG

(Difference

(Fold Union

(Cuboid [140, 30, 4))

(Tabulate (i 8)
(Translate [i* + 10i + 6, 15, 2]
(HexPrism [i + 3, 4])))

+ + (Cuboid [140, 30, 4)
' * (Fold Union

.. (Tabulate (i 4) :
(Translate [i* + 38i + 6, 15, 2]

(Cuboid [140, 30, 4])

+ (Fold Union
(Tabulate (i 8)
(Translate [iZ + 10i + 6, 15, 2] :

(Cylinder (i + 3, 4]))

6 LOC, Caddy

. !(Difference

+ * (Cuboid [140, 30, 4)

: + (Fold Union

(Translate

Enabled a whole new set of techniques

Discovered a new way on interacting with e-graphs

.............................

' + (Cuboid [140, 30, 4))

: + (Fold Union
(Tabulate (1 10) '
(Translate [i* + 10i + 6, 15, 2] |

(HexPrism (({+3) /2, 4])))




@ Linear Algebra Optimization

Baged on Apache SystemML
Replace the optimization of LA expressions with E-Graph
E xtraction aware of dengity/memory-usage

[.2x - 5x better results
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Why egraphs?

Fundamentally, this is a problem of generating many equivalent programs —
perfect for egraphs!

However, in our case, “programs” will simultaneously represent both
hardware and software!

Rewrites over our programs then become a natural way to represent changing
the partition between hardware and software!



Glenside’s goal:
For a given deep learning workload,
efficiently explore the massive space
of accelerator designs using egraphs.
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Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation

2. Run rewrites until saturation or timeout
- Software - software
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3. Extract hardware—software program tfrom egraph

/.. Separate hardware—software program into hardware description and software
schedule
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How do we represent
vector—matrix
multiplication in an egraph?
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Egraph Representation

The power of egraphs comes from their grouping of equivalent program nodes
(enodes) into the same equality class (eclass).

For this to be possible, we need a representation where every node has a value

and there are no side-effects, so that equivalent nodes can be swapped for one
another (referential transparency).
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— Egraph Representation
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— Egraph Representation
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Hardware Atoms

Hardware atoms are small hand-designed units which we compose to build a
hardware design.

Each hardware atom is paired with a functional description which we can use to
map it in to the workload.
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— Our Atom: Systolic Array

A systolic array is one way to implement vector—matrix multiplication in
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the
TPU!)

We describe its functional behavior with a rewrite:

(map-dot-product

(cartesian-product x{1xN vector} (cols y{NxM tensor}) ))
=> (systolic-array N M x y)



Codesigning a Vector-

Matrix Multiply
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Goal: explore hardware—software implementations of
(map-dot-product
(cartesian-product a{1x32}
(cols b{32x32})))
Using the atom library composed of:
(systolic-array N M x vy)
Where N,M = 16 or 32.
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We have:
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(cartesian-product a{1x32}
(cols b{32x32})))
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To explore hardware—software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product
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=> (systolic-array N M x y)
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cartesian—-product

systolic-array 32 32

®3ZX32

To explore hardware—software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product
(cartesian-product x{1xN vector} (cols y{NxM tensor}) ))
=> (systolic-array N M x y)



map-dot-product
cartesian—-product

systolic-array 32 32

We can already map in one
systolic array...but we want

to explore other designs!

To explore hardware—software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product
(cartesian-product x{1xN vector} (cols y{NxM tensor}) ))

=> (systolic-array N M x y)
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We use rewrites to expose
places where hardware can
be mapped in!
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a => (concat (slice a ...) (slice a ...))
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(let’s keep this graph simple!)
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Recall what we’re looking for:
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Vector—matrix multiplications
of different sizes!
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We won'’t find them here...the
concats are “hiding” the

tensor slices!

Can we move the concats
somehow?
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We won'’t find them here...the

concats are “hiding” the
tensor slices!

Can we move the concats
somehow?
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egg::rewrite! ("bubble-concat-through-cols";
"(cols (concat a b))"
=> "(concat (cols a) (cols b))")
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concat

systolic-array systolic-array
16 16 16 16

D S Y From this, we can extract a hardware
description and software schedule.

(our next step!)
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Early Results

ec! [
s sShlE 0, A ;
S ShiLE (] " .
::collapse_nested_slices(),
: :bubble_concat_through_rows_axis_0(),
: :bubble_concat_through_rows_axis_1(),
: :bubble_concat_through_cols_axis_0(),
: :bubble_concat_through_cols_axis_1(),
S bubblel concatithEolgh cartesian nrodlcE Mot lastiaxaisi e fE ()
: :bubble_concat_through_cartesian_product_not_Llast_axis_right(),
: :bubble_concat_through_cartesian_product_Llast_axis(),
.parse () : :bubble_concat_through_map_dot_product_not_last_axis(),
L blibblleficoncaitith FolghEmapideitibliEodict=la s ianel S ()

unwrapi( ) s : ]
PL)) : :systolic_array_vector_matrix )

| . >t s from_expr (&program) ;
r:new() .with_egraph(egraph) .run(&rws) ;
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. expect(
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Wrapping Up

e Initial success of this first experiment is promising!
e Many questions left to be answered
- Will this representation of tensor programs continue to work?
- How do we pull a “compiler” out of an egraph?
- How to implement a complex, multi-objective extraction process?

- How to represent hardware sharing?
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Thank you!
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