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Who?

• 2nd year at UW working in PL/
Arch with Zach Tatlock/Luis 
Ceze 

• Interested in how we can 
advance architecture w/ PL 
techniques

Zach

Luis
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…but designing deep 
learning stacks is complex!
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This system makes sense 
because chips and 
compilers are massive 
projects.

…but we can’t help but 
notice the inefficiencies!

• Slow

• Misses design points

• Design knowledge is 
lost in communication!
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Why not design the 
hardware and software at 

the same time?
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Hardware–software codesign often raises a healthy amount of skepticism due 
to its meager success in the past.

One of the primary issues is that the space of potential hardware–software 
designs is massive!
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If only we had a tool for 
representing massive 

search spaces!
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Why egraphs?
Fundamentally, this is a problem of generating many equivalent programs—
perfect for egraphs!

However, in our case, “programs” will simultaneously represent both 
hardware and software!

Rewrites over our programs then become a natural way to represent changing 
the partition between hardware and software!



Glenside’s goal: 
For a given deep learning workload, 

efficiently explore the massive space 
of accelerator designs using egraphs.
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Our Workload: Vector–Matrix Multiply

b, 32x32× =

×
×

×
×

⋮

=
=

=
=

⋮

sum =

a, 1x32 c, 1x32



How do we represent 
vector–matrix 

multiplication in an egraph?
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Egraph Representation
The power of egraphs comes from their grouping of equivalent program nodes 
(enodes) into the same equality class (eclass).

For this to be possible, we need a representation where every node has a value 
and there are no side-effects, so that equivalent nodes can be swapped for one 
another (referential transparency).
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Each hardware atom is paired with a functional description which we can use to 
map it in to the workload.



Our Atom: Systolic Array



Our Atom: Systolic Array
A systolic array is one way to implement vector–matrix multiplication in 
hardware.



Our Atom: Systolic Array
A systolic array is one way to implement vector–matrix multiplication in 
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the 
TPU!)



Our Atom: Systolic Array
A systolic array is one way to implement vector–matrix multiplication in 
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the 
TPU!)

We describe its functional behavior with a rewrite:



Our Atom: Systolic Array
A systolic array is one way to implement vector–matrix multiplication in 
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the 
TPU!)

We describe its functional behavior with a rewrite:

(map-dot-product



Our Atom: Systolic Array
A systolic array is one way to implement vector–matrix multiplication in 
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the 
TPU!)

We describe its functional behavior with a rewrite:

(map-dot-product

 (cartesian-product x{1xN vector} (cols y{NxM tensor}) ))
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A systolic array is one way to implement vector–matrix multiplication in 
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the 
TPU!)

We describe its functional behavior with a rewrite:
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(map-dot-product

 (cartesian-product a{1x32}

                    (cols b{32x32})))

Using the atom library composed of:

(systolic-array N M x y)

Where N,M = 16 or 32.
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We can already map in one 
systolic array…but we want 

to explore other designs!
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We use rewrites to expose 
places where hardware can 

be mapped in!
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From this, we can extract a hardware 
description and software schedule. 

(our next step!)
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Wrapping Up

• Initial success of this first experiment is promising!

• Many questions left to be answered

- Will this representation of tensor programs continue to work?

- How do we pull a “compiler” out of an egraph?

- How to implement a complex, multi-objective extraction process?

- How to represent hardware sharing?





Thank you!

https://github.com/gussmith23/glenside

https://justg.us

https://github.com/gussmith23/glenside
https://justg.us

