
Gus Smith, University of Washington
PL/Arch External Talk Series @ CAPRA, May 27th, 2020

Glenside
Partitioning Deep Learning Hardware and Software

Who?

• 2nd year at UW working in PL/
Arch with Zach Tatlock/Luis
Ceze

• Interested in how we can
advance architecture w/ PL
techniques

Zach

Luis

⚠ WIP ⚠

Architects
accelerate deep
learning with

custom hardware.

Architects
accelerate deep
learning with

custom hardware.

…but designing deep
learning stacks is complex!

An Oversimplified View of HW–SW stack design

WorkloadsWorkloadsWorkloads

An Oversimplified View of HW–SW stack design

WorkloadsWorkloadsWorkloads

(hardware engineers)

An Oversimplified View of HW–SW stack design

WorkloadsWorkloadsWorkloads

(hardware engineers) (software engineers)

An Oversimplified View of HW–SW stack design

WorkloadsWorkloadsWorkloads

(hardware engineers) (software engineers)

We need matrix
multiplication!

An Oversimplified View of HW–SW stack design

WorkloadsWorkloadsWorkloads

(hardware engineers) (software engineers)

We need matrix
multiplication!

We can build it! And we’ll
build ReLU, why not?

An Oversimplified View of HW–SW stack design

WorkloadsWorkloadsWorkloads

(hardware engineers) (software engineers)

We need matrix
multiplication!

We can build it! And we’ll
build ReLU, why not?

…we’ll figure out
how to use it!

An Oversimplified View of HW–SW stack design

WorkloadsWorkloadsWorkloads

(hardware engineers) (software engineers)

We need matrix
multiplication!

We can build it! And we’ll
build ReLU, why not?

WorkloadsWorkloadsHardware
Intrinsics

…we’ll figure out
how to use it!

An Oversimplified View of HW–SW stack design

WorkloadsWorkloadsWorkloads

(hardware engineers) (software engineers)

We need matrix
multiplication!

We can build it! And we’ll
build ReLU, why not?

WorkloadsWorkloadsHardware
Intrinsics

WorkloadsWorkloadsCompiler Passes

WorkloadsWorkloadsKernels

…we’ll figure out
how to use it!

An Oversimplified View of HW–SW stack design

WorkloadsWorkloadsWorkloads

(hardware engineers) (software engineers)

WorkloadsWorkloadsHardware
Intrinsics

WorkloadsWorkloadsCompiler Passes

WorkloadsWorkloadsKernels

We need matrix
multiplication!

We can build it! And we’ll
build ReLU, why not?

…we’ll figure out
how to use it!

An Oversimplified View of HW–SW stack design

This system makes sense
because chips and
compilers are massive
projects.

WorkloadsWorkloadsWorkloads

(hardware engineers) (software engineers)

WorkloadsWorkloadsHardware
Intrinsics

WorkloadsWorkloadsCompiler Passes

WorkloadsWorkloadsKernels

We need matrix
multiplication!

We can build it! And we’ll
build ReLU, why not?

…we’ll figure out
how to use it!

An Oversimplified View of HW–SW stack design

This system makes sense
because chips and
compilers are massive
projects.

…but we can’t help but
notice the inefficiencies!

WorkloadsWorkloadsWorkloads

(hardware engineers) (software engineers)

WorkloadsWorkloadsHardware
Intrinsics

WorkloadsWorkloadsCompiler Passes

WorkloadsWorkloadsKernels

We need matrix
multiplication!

We can build it! And we’ll
build ReLU, why not?

…we’ll figure out
how to use it!

An Oversimplified View of HW–SW stack design

This system makes sense
because chips and
compilers are massive
projects.

…but we can’t help but
notice the inefficiencies!

• Slow

WorkloadsWorkloadsWorkloads

(hardware engineers) (software engineers)

WorkloadsWorkloadsHardware
Intrinsics

WorkloadsWorkloadsCompiler Passes

WorkloadsWorkloadsKernels

We need matrix
multiplication!

We can build it! And we’ll
build ReLU, why not?

…we’ll figure out
how to use it!

An Oversimplified View of HW–SW stack design

This system makes sense
because chips and
compilers are massive
projects.

…but we can’t help but
notice the inefficiencies!

• Slow

• Misses design points

WorkloadsWorkloadsWorkloads

(hardware engineers) (software engineers)

WorkloadsWorkloadsHardware
Intrinsics

WorkloadsWorkloadsCompiler Passes

WorkloadsWorkloadsKernels

We need matrix
multiplication!

We can build it! And we’ll
build ReLU, why not?

…we’ll figure out
how to use it!

An Oversimplified View of HW–SW stack design

This system makes sense
because chips and
compilers are massive
projects.

…but we can’t help but
notice the inefficiencies!

• Slow

• Misses design points

• Design knowledge is
lost in communication!

WorkloadsWorkloadsWorkloads

(hardware engineers) (software engineers)

WorkloadsWorkloadsHardware
Intrinsics

WorkloadsWorkloadsCompiler Passes

WorkloadsWorkloadsKernels

We need matrix
multiplication!

We can build it! And we’ll
build ReLU, why not?

…we’ll figure out
how to use it!

Why not design the
hardware and software at

the same time?

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

(automatic codesigner)

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication…

(automatic codesigner)

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication… I see a 16x32 vector–

matrix multiplication…

(automatic codesigner)

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication… I see a 16x32 vector–

matrix multiplication…
I see a 40x102 fused

vector–matrix multiplication/
ReLU…

(automatic codesigner)

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication… I see a 16x32 vector–

matrix multiplication…
I see a 40x102 fused

vector–matrix multiplication/
ReLU…

…and I already know
how best to use them :)

(automatic codesigner)

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

WorkloadsWorkloadsCompiler Passes
WorkloadsWorkloadsKernels

WorkloadsWorkloadsHardware
Intrinsics

I see a 16x16 vector–
matrix multiplication… I see a 16x32 vector–

matrix multiplication…
I see a 40x102 fused

vector–matrix multiplication/
ReLU…

…and I already know
how best to use them :)

(automatic codesigner)

…this is not a new idea. Hardware–software codesign is a dream that people
have had for some time.

…this is not a new idea. Hardware–software codesign is a dream that people
have had for some time.

Hardware–software codesign often raises a healthy amount of skepticism due
to its meager success in the past.

…this is not a new idea. Hardware–software codesign is a dream that people
have had for some time.

Hardware–software codesign often raises a healthy amount of skepticism due
to its meager success in the past.

One of the primary issues is that the space of potential hardware–software
designs is massive!

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

(automatic codesigner)

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication…

(automatic codesigner)

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication… …or I could split it into 8x8…

(automatic codesigner)

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication… …or I could split it into 8x8…

(automatic codesigner)

…or 4x4…

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication… …or I could split it into 8x8…

(automatic codesigner)

…or 4x4…
…or what if I used a
16x8 and two 8x8s?

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication… …or I could split it into 8x8…

(automatic codesigner)

…or 4x4…
…or what if I used a
16x8 and two 8x8s?

…and then I could fuse each
of these with a ReLU…

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication… …or I could split it into 8x8…

(automatic codesigner)

…or 4x4…
…or what if I used a
16x8 and two 8x8s?

…and then I could fuse each
of these with a ReLU…

…no, I’ll just make
them all 1x1s!!!

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication… …or I could split it into 8x8…

(automatic codesigner)

…or 4x4…
…or what if I used a
16x8 and two 8x8s?

…and then I could fuse each
of these with a ReLU…

…no, I’ll just make
them all 1x1s!!!

TOO MANY
OPTIONS!!!

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication… …or I could split it into 8x8…

(automatic codesigner)

…or 4x4…
…or what if I used a
16x8 and two 8x8s?

…and then I could fuse each
of these with a ReLU…

…no, I’ll just make
them all 1x1s!!!

TOO MANY
OPTIONS!!!

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication… …or I could split it into 8x8…

(automatic codesigner)

…or 4x4…
…or what if I used a
16x8 and two 8x8s?

…and then I could fuse each
of these with a ReLU…

…no, I’ll just make
them all 1x1s!!!

TOO MANY
OPTIONS!!!

A Hardware–Software Codesign Approach
WorkloadsWorkloadsWorkloads

I see a 16x16 vector–
matrix multiplication… …or I could split it into 8x8…

(automatic codesigner)

…or 4x4…
…or what if I used a
16x8 and two 8x8s?

…and then I could fuse each
of these with a ReLU…

…no, I’ll just make
them all 1x1s!!!

TOO MANY
OPTIONS!!!

If only we had a tool for
representing massive

search spaces!

Why egraphs?

Why egraphs?
Fundamentally, this is a problem of generating many equivalent programs—
perfect for egraphs!

Why egraphs?
Fundamentally, this is a problem of generating many equivalent programs—
perfect for egraphs!

However, in our case, “programs” will simultaneously represent both
hardware and software!

Why egraphs?
Fundamentally, this is a problem of generating many equivalent programs—
perfect for egraphs!

However, in our case, “programs” will simultaneously represent both
hardware and software!

Rewrites over our programs then become a natural way to represent changing
the partition between hardware and software!

Glenside’s goal:
For a given deep learning workload,

efficiently explore the massive space
of accelerator designs using egraphs.

Glenside Design

How Glenside Works

How Glenside Works
Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

How Glenside Works
Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation

How Glenside Works
Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation

2. Run rewrites until saturation or timeout

How Glenside Works
Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation

2. Run rewrites until saturation or timeout

- Software → software

How Glenside Works
Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation

2. Run rewrites until saturation or timeout

- Software → software

- Software → hardware

How Glenside Works
Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation

2. Run rewrites until saturation or timeout

- Software → software

- Software → hardware

3. Extract hardware–software program from egraph

How Glenside Works
Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation

2. Run rewrites until saturation or timeout

- Software → software

- Software → hardware

3. Extract hardware–software program from egraph

4. Separate hardware–software program into hardware description and software
schedule

How Glenside Works
Given: (1) A deep learning model in a high level deep learning DSL; (2) a library
of hardware atoms

1. Convert model to our egraph representation

2. Run rewrites until saturation or timeout

- Software → software

- Software → hardware

3. Extract hardware–software program from egraph

4. Separate hardware–software program into hardware description and software
schedule

Our Workload: Vector–Matrix Multiply

b, 32x32× =
a, 1x32 c, 1x32

Our Workload: Vector–Matrix Multiply

b, 32x32× =
a, 1x32 c, 1x32

Our Workload: Vector–Matrix Multiply

b, 32x32× =

×
×

×
×

⋮

a, 1x32 c, 1x32

Our Workload: Vector–Matrix Multiply

b, 32x32× =

×
×

×
×

⋮

=
=

=
=

⋮

a, 1x32 c, 1x32

Our Workload: Vector–Matrix Multiply

b, 32x32× =

×
×

×
×

⋮

=
=

=
=

⋮

sum

a, 1x32 c, 1x32

Our Workload: Vector–Matrix Multiply

b, 32x32× =

×
×

×
×

⋮

=
=

=
=

⋮

sum =

a, 1x32 c, 1x32

How do we represent
vector–matrix

multiplication in an egraph?

Egraph Representation

Egraph Representation
The power of egraphs comes from their grouping of equivalent program nodes
(enodes) into the same equality class (eclass).

Egraph Representation
The power of egraphs comes from their grouping of equivalent program nodes
(enodes) into the same equality class (eclass).

For this to be possible, we need a representation where every node has a value
and there are no side-effects, so that equivalent nodes can be swapped for one
another (referential transparency).

(vec-mat-mult a b) :=

(map-dot-product

 (cartesian-product a (cols b))

)

Egraph Representation

(map-dot-product

 (cartesian-product

 a

 (cols b)

)

)

b, 32x32(cols) =

32x32

Egraph Representation

(map-dot-product

 (cartesian-product

 a

 (cols b)

)

)

(cartesian-product)

=

1x32x(2x32)

(,)

(,)

co
l
0

co
l
3

Egraph Representation

(map-dot-product

 (cartesian-product

 a

 (cols b)

)

)

(map-dot-product)

=

1x32

(,)

(,)

co
l
0

co
l
3

Hardware Atoms

Hardware Atoms
Hardware atoms are small hand-designed units which we compose to build a
hardware design.

Hardware Atoms
Hardware atoms are small hand-designed units which we compose to build a
hardware design.

Each hardware atom is paired with a functional description which we can use to
map it in to the workload.

Our Atom: Systolic Array

Our Atom: Systolic Array
A systolic array is one way to implement vector–matrix multiplication in
hardware.

Our Atom: Systolic Array
A systolic array is one way to implement vector–matrix multiplication in
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the
TPU!)

Our Atom: Systolic Array
A systolic array is one way to implement vector–matrix multiplication in
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the
TPU!)

We describe its functional behavior with a rewrite:

Our Atom: Systolic Array
A systolic array is one way to implement vector–matrix multiplication in
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the
TPU!)

We describe its functional behavior with a rewrite:

(map-dot-product

Our Atom: Systolic Array
A systolic array is one way to implement vector–matrix multiplication in
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the
TPU!)

We describe its functional behavior with a rewrite:

(map-dot-product

 (cartesian-product x{1xN vector} (cols y{NxM tensor})))

Our Atom: Systolic Array
A systolic array is one way to implement vector–matrix multiplication in
hardware.

They have a fixed size input they can handle, e.g. 16x16 (or 256x256 on the
TPU!)

We describe its functional behavior with a rewrite:

(map-dot-product

 (cartesian-product x{1xN vector} (cols y{NxM tensor})))

 => (systolic-array N M x y)

Codesigning a Vector–
Matrix Multiply

Goal: explore hardware–software implementations of

Goal: explore hardware–software implementations of

(map-dot-product

Goal: explore hardware–software implementations of

(map-dot-product

 (cartesian-product a{1x32}

Goal: explore hardware–software implementations of

(map-dot-product

 (cartesian-product a{1x32}

 (cols b{32x32})))

Goal: explore hardware–software implementations of

(map-dot-product

 (cartesian-product a{1x32}

 (cols b{32x32})))

Using the atom library composed of:

Goal: explore hardware–software implementations of

(map-dot-product

 (cartesian-product a{1x32}

 (cols b{32x32})))

Using the atom library composed of:

(systolic-array N M x y)

Goal: explore hardware–software implementations of

(map-dot-product

 (cartesian-product a{1x32}

 (cols b{32x32})))

Using the atom library composed of:

(systolic-array N M x y)

Where N,M = 16 or 32.

We have:

(map-dot-product

 (cartesian-product a{1x32}

 (cols b{32x32})))

map-dot-product

cartesian-product

colsa

b 32x32

1x32

map-dot-product

cartesian-product

colsa

b 32x32

1x32

To explore hardware–software splits, we want to find places where we
can introduce our hardware atom:

map-dot-product

cartesian-product

colsa

b 32x32

1x32

To explore hardware–software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product

map-dot-product

cartesian-product

colsa

b 32x32

1x32

To explore hardware–software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product

 (cartesian-product x{1xN vector} (cols y{NxM tensor})))

map-dot-product

cartesian-product

colsa

b 32x32

1x32

To explore hardware–software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product

 (cartesian-product x{1xN vector} (cols y{NxM tensor})))

 => (systolic-array N M x y)

map-dot-product

cartesian-product

colsa

b 32x32

1x32

To explore hardware–software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product

 (cartesian-product x{1xN vector} (cols y{NxM tensor})))

 => (systolic-array N M x y)

map-dot-product

cartesian-product

colsa

b 32x32

1x32

systolic-array 32 32

a b

To explore hardware–software splits, we want to find places where we
can introduce our hardware atom:

(map-dot-product

 (cartesian-product x{1xN vector} (cols y{NxM tensor})))

 => (systolic-array N M x y)

map-dot-product

cartesian-product

colsa

b 32x32

1x32

systolic-array 32 32

a b

We can already map in one
systolic array…but we want

to explore other designs!

map-dot-product

cartesian-product

cols???

16x16

1x16

???

…

…

map-dot-product

cartesian-product

cols???

16x16

1x16

???

…

…

systolic-array 16 16

a b

map-dot-product

cartesian-product

cols???

16x16

1x16

???

…

…

map-dot-product

cartesian-product

cols???

32x16

1x32

???

…

…

systolic-array 16 16

a b

map-dot-product

cartesian-product

cols???

16x16

1x16

???

…

…

map-dot-product

cartesian-product

cols???

32x16

1x32

???

…

…

systolic-array 16 16

a b

systolic-array 32 16

a b

We use rewrites to expose
places where hardware can

be mapped in!

First Rewrite: Splitting

First Rewrite: Splitting

=

First Rewrite: Splitting

=

First Rewrite: Splitting

= +

First Rewrite: Splitting

= +

First Rewrite: Splitting

a => (concat (slice a ...) (slice a ...))

= +

First Rewrite: Splitting

a => (concat (slice a ...) (slice a ...))

= =+

First Rewrite: Splitting

a => (concat (slice a ...) (slice a ...))

+= =+

First Rewrite: Splitting

a => (concat (slice a ...) (slice a ...))

+=

+()

=+

First Rewrite: Splitting

a => (concat (slice a ...) (slice a ...))

+=

+()

+()

=+

map-dot-product

cartesian-product

colsa

b

map-dot-product

cartesian-product

cols

concat

b

slice

concat concat

slice slice slice

concat

a

sliceslice

map-dot-product

cartesian-product

cols

concat

b

slice

concat concat

slice slice slice

concat

a

sliceslice

map-dot-product

cartesian-product

cols

concat

b

slice

concat concat

slice slice slice

concat

a

sliceslice

map-dot-product

cartesian-product

cols

concat

b

slice

concat concat

slice slice slice

concat

a

sliceslice

map-dot-product

cartesian-product

cols

concat

b

slice

concat concat

slice slice slice

concat

a

sliceslice

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice

(let’s keep this graph simple!)

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice

Recall what we’re looking for:

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice

Recall what we’re looking for:

Vector–matrix multiplications
of different sizes!

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice???

??
?

Recall what we’re looking for:

Vector–matrix multiplications
of different sizes!

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice???

??
?

???
???Recall what we’re looking for:

Vector–matrix multiplications
of different sizes!

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice

We won’t find them here…the
concats are “hiding” the
tensor slices!

Recall what we’re looking for:

Vector–matrix multiplications
of different sizes!

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice

32x32

1x32

We won’t find them here…the
concats are “hiding” the
tensor slices!

Recall what we’re looking for:

Vector–matrix multiplications
of different sizes!

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice

32x32

1x32

We won’t find them here…the
concats are “hiding” the
tensor slices!

1x16 1x16

Recall what we’re looking for:

Vector–matrix multiplications
of different sizes!

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice

32x32

1x32

We won’t find them here…the
concats are “hiding” the
tensor slices!

1x16 1x16

... ...

Recall what we’re looking for:

Vector–matrix multiplications
of different sizes!

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice

32x32

1x32

We won’t find them here…the
concats are “hiding” the
tensor slices!

Can we move the concats
somehow?

1x16 1x16

... ...

Recall what we’re looking for:

Vector–matrix multiplications
of different sizes!

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice

32x32

1x32

We won’t find them here…the
concats are “hiding” the
tensor slices!

Can we move the concats
somehow?

1x16 1x16

... ...

Recall what we’re looking for:

Vector–matrix multiplications
of different sizes!

map-dot-product

cartesian-product

colsconcat

a

slice concat

b

slice

slice

slice

concat

map-dot-product

cartesian-product

b

slice

egg::rewrite!("bubble-concat-through-cols";
 "(cols (concat a b))"
 => "(concat (cols a) (cols b))")

slice

colscols

concat

a

sliceslice

concat

map-dot-product

cartesian-product

b

slice slice

colscols

concat

a

sliceslice

map-dot-product

concat

cartesian-product cartesian-product

a

slice

b

slice

cols

a

slice

b

slice

cols

… …

cartesian-product

a

slice

b

slice

cols

… …

concat

map-dot-product

cartesian-product

a

slice

b

slice

cols

map-dot-product

sum

cartesian-product

a

slice

b

slice

cols

… …

concat

map-dot-product

cartesian-product

a

slice

b

slice

cols

map-dot-product

sum

16x16

1x16 1x16

16x16

a

slice

b

slice

… …

concat

systolic-array
16 16

sum

a

slice

b

slice

 systolic-array
16 16

a

slice

b

slice

… …

concat

systolic-array
16 16

sum

a

slice

b

slice

systolic-array
16 16

From this, we can extract a hardware
description and software schedule.

(our next step!)

Early Results

Early Results

Early Results

Early Results

Wrapping Up

Wrapping Up

• Initial success of this first experiment is promising!

Wrapping Up

• Initial success of this first experiment is promising!

• Many questions left to be answered

Wrapping Up

• Initial success of this first experiment is promising!

• Many questions left to be answered

- Will this representation of tensor programs continue to work?

Wrapping Up

• Initial success of this first experiment is promising!

• Many questions left to be answered

- Will this representation of tensor programs continue to work?

- How do we pull a “compiler” out of an egraph?

Wrapping Up

• Initial success of this first experiment is promising!

• Many questions left to be answered

- Will this representation of tensor programs continue to work?

- How do we pull a “compiler” out of an egraph?

- How to implement a complex, multi-objective extraction process?

Wrapping Up

• Initial success of this first experiment is promising!

• Many questions left to be answered

- Will this representation of tensor programs continue to work?

- How do we pull a “compiler” out of an egraph?

- How to implement a complex, multi-objective extraction process?

- How to represent hardware sharing?

Thank you!

https://github.com/gussmith23/glenside

https://justg.us

https://github.com/gussmith23/glenside
https://justg.us

