
UCSD Embedded Systems Lunch

Pure Tensor Program Rewriting
via Access Patterns

Gus Henry Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson,
Joseph McMahan, Michael Taylor, Luis Ceze, Zachary Tatlock

• 3rd year PhD at UW

• Working with Zach Tatlock
and Luis Ceze

• Interested in the overlap
between programming
languages and hardware
design

Zach

Luis

It reads an entire weight
array of shape rows by cols.

It reads an entire weight
array of shape rows by cols.

It then pushes n vectors of
length rows through the array.

It reads an entire weight
array of shape rows by cols.

It then pushes n vectors of
length rows through the array.

It computes the dot product
of every vector with every

column of the weights.

It reads an entire weight
array of shape rows by cols.

It then pushes n vectors of
length rows through the array.

It computes the dot product
of every vector with every

column of the weights.

Finally, it writes out n
vectors of length cols.

It reads an entire weight
array of shape rows by cols.

It then pushes n vectors of
length rows through the array.

It computes the dot product
of every vector with every

column of the weights.

Finally, it writes out n
vectors of length cols.

…but how do I
compile to it?

<custom compiler>

??? ???

<custom compiler>

??? ???

Adding backends requires
tons of compiler experience!

It reads an entire weight
array of shape rows by cols.

It then pushes n vectors of
length rows through the array.

It computes the dot product
of every vector with every

column of the weights.

Finally, it writes out n
vectors of length cols.

It reads an entire weight
array of shape rows by cols.

It then pushes n vectors of
length rows through the array.

It computes the dot product
of every vector with every

column of the weights.

Finally, it writes out n
vectors of length cols.

Given so much detail about the
hardware, could our compiler

map to it automatically?

It reads an entire weight
array of shape rows by cols.

It then pushes n vectors of
length rows through the array.

It computes the dot product
of every vector with every

column of the weights.

Finally, it writes out n
vectors of length cols.

Using a formal description of the hardware,
the compiler performs hardware mapping

Hardware mapping is a
program rewriting problem!

…but current IRs are not up
to the task.

Three requirements for a hardware mapping language:

Three requirements for a hardware mapping language:

1. The language must be pure, enabling equational reasoning in term rewriting.

Three requirements for a hardware mapping language:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

Three requirements for a hardware mapping language:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

Three requirements for a hardware mapping language:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

Binding structures—for example, in the form of
lambdas—provide expressiveness.

Three requirements for a hardware mapping language:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

Binding structures—for example, in the form of
lambdas—provide expressiveness.

However, they are difficult to deal with in term
rewriting: rewrites must explicitly ensure that

they do not introduce name conflicts.

Three requirements for a hardware mapping language:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

Binding structures—for example, in the form of
lambdas—provide expressiveness.

However, they are difficult to deal with in term
rewriting: rewrites must explicitly ensure that

they do not introduce name conflicts.

Thus, we seek to avoid using binding altogether!

Three examples of IRs from TVM:

Pure? Low-level? Can avoid
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Three examples of IRs from TVM:

Pure? Low-level? Can avoid
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Three examples of IRs from TVM:

Pure? Low-level? Can avoid
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Three examples of IRs from TVM:

Pure? Low-level? Can avoid
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Three examples of IRs from TVM:

Pure? Low-level? Can avoid
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Three examples of IRs from TVM:

Pure? Low-level? Can avoid
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Current IRs fall short on our requirements!

We present our core abstraction, access patterns.

We present our core abstraction, access patterns.

Around them, we design Glenside, a pure, low-
level, binder-free tensor IR.

We present our core abstraction, access patterns.

Around them, we design Glenside, a pure, low-
level, binder-free tensor IR.

Finally, we demonstrate how Glenside enables
low-level tensor program rewriting.

Outline

• Motivating Example: A Functional Matrix Multiplication

• Access Pattern Definition

• Case Studies

- Reimplementing Matrix Multiplication with Access Patterns

- Implementing 2D Convolution with Access Patterns

- Hardware Mapping as Program Rewriting

- Flexible Hardware Mapping with Equality Saturation

Outline

• Motivating Example: A Functional Matrix Multiplication

• Access Pattern Definition

• Case Studies

- Reimplementing Matrix Multiplication with Access Patterns

- Implementing 2D Convolution with Access Patterns

- Hardware Mapping as Program Rewriting

- Flexible Hardware Mapping with Equality Saturation

We want to represent matrix multiplication in a way that

We want to represent matrix multiplication in a way that

1. is pure,

We want to represent matrix multiplication in a way that

1. is pure,

2. is low-level, and

We want to represent matrix multiplication in a way that

1. is pure,

2. is low-level, and

3. avoids binding.

Given matrices A and B, pair each row
of A with each column of B, compute
their dot products, and arrange the

results back into a matrix.

[,][, ,]

View matrices as lists of rows/ columns

[,][, ,]

View matrices as lists of rows/ columns

[,]×[, ,]

Take their
Cartesian product

[,(), (), (, ,),

), (, ,), (,()]

Every row paired
with every column

[,(), (), (, ,),

), (, ,), (),(

map dotProd

]

Map dot product
operator over every

row/column pair

[, , ,
, ,]

But there’s a problem!

[, , ,
, ,]

× =

≠ The values are
correct, but the

shape is missing!

[, , ,
, ,]

[, , ,
, ,]

⏪

[,(), (), (, ,),

), (, ,), (),(

map dot-product

]

⏪

[,(), (), (, ,),

), (, ,), (,()]

⏪

[,]×[, ,]

⏪

[,]×[, ,]

⏪⏸

[,]×[, ,]

⏪⏸
Shape information is

present here…

[,]×[, ,]

⏪⏸▶
Shape information is

present here…

[,(), (), (, ,),

), (, ,), (,()]

▶

[,(), (), (, ,),

), (, ,), (,()]

▶

…but absent here!

Cartesian product destroys
our shape information!

[,]×2D[, ,]

We introduce a new
Cartesian product

operator

[,(), ()],,

,),)],,

,), (,

(

)]

[

[(

[(]

2D Cartesian product
operator preserves

shape info

[,(), ()],,

,),)],,

,), (,

(

)]

[

[(

[(]

map dotProd

[,(), ()],,

,),)],,

,), (,

(

)]

[

[(

[(]

dotProd

dotProd

dotProd

But now, map
operator maps over
wrong dimension!

[,(), ()],,

,),)],,

,), (,

(

)]

[

[(

[(]

map2D dotProd

We also need a new
map operator

[,(),)],,

,),)],,

,), ,

(

)]

[

(

(]

dotProd

dotProd

dotProd

dotProd (

dotProd[

[(dotProd
2D map operator

maps over correct
dimension

[,]

]

[,
,][,

,][

Shape information
is preserved!

×2D and map2D hard-code which dimensions are iterated over and
which dimensions are computed on…

×2D and map2D hard-code which dimensions are iterated over and
which dimensions are computed on…

…but if tensor shapes change, we’ll need entirely new operators!

×2D and map2D hard-code which dimensions are iterated over and
which dimensions are computed on…

…but if tensor shapes change, we’ll need entirely new operators!

Can we encode this in the tensor itself?

Outline

• Motivating Example: A Functional Matrix Multiplication

• Access Pattern Definition

• Case Studies

- Reimplementing Matrix Multiplication with Access Patterns

- Implementing 2D Convolution with Access Patterns

- Hardware Mapping as Program Rewriting

- Flexible Hardware Mapping with Equality Saturation

(3, 4)

[
,

,
]

((3), (4))

[
,

,
]

((3), (4))

access dimensions
(iterated over)

[
,

,
]

((3), (4))

access dimensions
(iterated over)

compute dimensions
(computed on)

[
,

,
]

((3), (4))

access dimensions
(iterated over)

compute dimensions
(computed on)

This is an access pattern!

[
,

,
]

((3), (4))

access dimensions
(iterated over)

compute dimensions
(computed on)

This is an access pattern!

A 3-length vector of
4-length vectors

A 3-length vector of
4-length vectors

((3,4), ())

[
,

,
]

[], , ,

[], , ,

[], , ,

access dimensions
(iterated over)

compute dimensions
(computed on)

((3,4), ())

[
,

,
]

[], , ,

[], , ,

[], , ,

access dimensions
(iterated over)

compute dimensions
(computed on)

A 3-length vector of
4-length vectors

A (3,4)-shaped
tensor of scalars

((), (3,4))

access dimensions
(iterated over)

compute dimensions
(computed on)

((), (3,4))

access dimensions
(iterated over)

compute dimensions
(computed on)

A 3-length vector of
4-length vectors

A scalar-shaped
tensor of a single

(3,4)-shaped tensor

((), (3,4)) ((3,4), ())

[
,

,
]

[], , ,

[], , ,

[], , ,

[
,

,
]

((3), (4))

((), (3,4)) ((3,4), ())

[
,

,
]

[], , ,

[], , ,

[], , ,

[
,

,
]

((3), (4))

Same tensor, three possible views!

We can redefine common tensor and list operators
with access pattern semantics—details in paper!

Outline

• Motivating Example: A Functional Matrix Multiplication

• Access Pattern Definition

• Case Studies

- Reimplementing Matrix Multiplication with Access Patterns

- Implementing 2D Convolution with Access Patterns

- Hardware Mapping as Program Rewriting

- Flexible Hardware Mapping with Equality Saturation

Outline

• Motivating Example: A Functional Matrix Multiplication

• Access Pattern Definition

• Case Studies

- Reimplementing Matrix Multiplication with Access Patterns

- Implementing 2D Convolution with Access Patterns

- Hardware Mapping as Program Rewriting

- Flexible Hardware Mapping with Equality Saturation

Given matrices A and B, pair each row
of A with each column of B, compute
their dot products, and arrange the

results back into a matrix.

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((3), (4))

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((3), (4))
Access A as a list of its rows

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))

; ((3), (4))

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))

; ((3), (4))

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))

; ((3), (4))
Access B as a list
of its rows, then
transpose into a

list of its columns

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))
; ((3, 2), (2, 4))

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))
; ((3, 2), (2, 4))

Create every row–column pair

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))
; ((3, 2), (2, 4))
; ((3, 2), ())

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))
; ((3, 2), (2, 4))
; ((3, 2), ())

Compute dot product of every row–column pair

Outline

• Motivating Example: A Functional Matrix Multiplication

• Access Pattern Definition

• Case Studies

- Reimplementing Matrix Multiplication with Access Patterns

- Implementing 2D Convolution with Access Patterns

- Hardware Mapping as Program Rewriting

- Flexible Hardware Mapping with Equality Saturation

[

[

[

[

Inputs: image/activation tensor
and a list of weight/filter tensors

Filter and region of image are
elementwise multiplied and the

results are summed

[
[

One output channel for each input filter

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

Access weights as a vector of 3D filters

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

Access activations as a vector of 3D images

; ((N), (C, H, W))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

Form windows over input images

; ((N), (C, H, W))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

These parameters control
window shape and strides

; ((N), (C, H, W))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S
At each location in the new image,

there is a (C, Kh, Kw)-shaped window

; ((N), (C, H, W))

; ((N, 1, H’, W’), (C, Kh, Kw))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

Pair windows with filters

; ((N), (C, H, W))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((N, 1, H’, W’, O), (2, C, Kh, Kw))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

SCompute dot product of each window–filter pair

; ((N), (C, H, W))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((N, 1, H’, W’, O), (2, C, Kh, Kw))

; ((N, 1, H’, W’, O), ())

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

Remove and rearrange dimensions

; ((N), (C, H, W))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((N, 1, H’, W’, O), (2, C, Kh, Kw))

; ((N, 1, H’, W’, O), ())

; ((N, O, H’, W’), ())

Outline

• Motivating Example: A Functional Matrix Multiplication

• Access Pattern Definition

• Case Studies

- Reimplementing Matrix Multiplication with Access Patterns

- Implementing 2D Convolution with Access Patterns

- Hardware Mapping as Program Rewriting

- Flexible Hardware Mapping with Equality Saturation

It reads an entire weight
array of shape rows by cols.

It then pushes n vectors of
length rows through the array.

It computes the dot product
of every vector with every

column of the weights.

Finally, it writes out n
vectors of length cols.

Can we represent hardware
as a searchable pattern?

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

With Glenside, we can!

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

(systolicArray ?rows ?cols ?a0 ?a1)

We can directly rewrite to hardware invocations!

Outline

• Motivating Example: A Functional Matrix Multiplication

• Access Pattern Definition

• Case Studies

- Reimplementing Matrix Multiplication with Access Patterns

- Implementing 2D Convolution with Access Patterns

- Hardware Mapping as Program Rewriting

- Flexible Hardware Mapping with Equality Saturation

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd

 (cartProd

 (access A 1)

 (transpose

 (access B 1)

 (list 1 0))))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd

 (cartProd

 (access A 1)

 (transpose

 (access B 1)

 (list 1 0))))

A 3-length vector of 4-
length vectors

Convolution and matrix
multiplication have

similar structure!

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

Can we apply our hardware rewrite?

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw)) Our access pattern shapes do not
pass the rewrite’s conditions

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

; ((?n), (?rows))

; ((?cols), (?rows))

Can we flatten our access patterns?

?a → (reshape (flatten ?a) ?shape)

Flattens and immediately reshapes an access pattern

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (reshape (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))) ?shape0)

 (reshape (flatten (access weights 1)) ?shape1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (reshape (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))) ?shape0)

 (reshape (flatten (access weights 1)) ?shape1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

But our access pattern shapes haven’t changed!

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (reshape (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))) ?shape0)

 (reshape (flatten (access weights 1)) ?shape1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

We need to “bubble” the reshapes to the top

(cartProd
 (reshape ?a0 ?shape0)
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd
 (reshape ?a ?shape)) → (reshape (compute dotProd ?a) ?newShape)

These rewrites “bubble” reshape through cartProd and compute dotProd

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (reshape (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))) ?shape0)

 (reshape (flatten (access weights 1)) ?shape1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

(transpose

 (squeeze

 (reshape (compute dotProd

 (cartProd

 (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw)))

 (flatten (access weights 1)))) ?shape)

 1)

 (list 0 3 1 2))

; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

reshapes have been moved out, and the access patterns are flattened!

(transpose

 (squeeze

 (reshape (compute dotProd

 (cartProd

 (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw)))

 (flatten (access weights 1)))) ?shape)

 1)

 (list 0 3 1 2))

; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

Our systolic array rewrite can
now map convolution to matrix

multiplication hardware!

(cartProd
 (reshape ?a0 ?shape0)
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd
 (reshape ?a ?shape)) → (reshape (compute dotProd ?a) ?newShape)

?a → (reshape (flatten ?a) ?shape)

These rewrites rediscover the im2col transformation!

In conclusion,

In conclusion,

we have presented access patterns as a new tensor representation

In conclusion,

we have presented access patterns as a new tensor representation

and have shown how they enable hardware-level tensor program rewriting.

Pure Tensor Program Rewriting via
Access Patterns (Representation Pearl)

https://arxiv.org/abs/2105.09377
To appear at MAPS 2021!

https://arxiv.org/abs/2105.09377

https://github.com/gussmith23/glenside
Glenside is an actively-maintained Rust library!

Try it out and open issues if you have questions!

https://github.com/gussmith23/glenside

Thank you!

