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…but how do I 
compile to it?
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Adding backends requires 
tons of compiler experience!
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It reads an entire weight 
array of shape rows by cols. 

It then pushes n vectors of 
length rows through the array.

It computes the dot product 
of every vector with every 

column of the weights.

Finally, it writes out n 
vectors of length cols.

Given so much detail about the 
hardware, could our compiler 

map to it automatically?



It reads an entire weight 
array of shape rows by cols. 

It then pushes n vectors of 
length rows through the array.

It computes the dot product 
of every vector with every 

column of the weights.

Finally, it writes out n 
vectors of length cols.











Using a formal description of the hardware, 
the compiler performs hardware mapping



Hardware mapping is a 
program rewriting problem!



…but current IRs are not up 
to the task.
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Three requirements for a hardware mapping language:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

Binding structures—for example, in the form of 
lambdas—provide expressiveness.

However, they are difficult to deal with in term 
rewriting: rewrites must explicitly ensure that 

they do not introduce name conflicts. 

Thus, we seek to avoid using binding altogether!
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Three examples of IRs from TVM:

Pure? Low-level? Can avoid 
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Current IRs fall short on our requirements!
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We present our core abstraction, access patterns.

Around them, we design Glenside, a pure, low-
level, binder-free tensor IR.

Finally, we demonstrate how Glenside enables  
low-level tensor program rewriting.
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We want to represent matrix multiplication in a way that

1. is pure,

2.  is low-level, and

3.  avoids binding.



Given matrices A and B, pair each row 
of A with each column of B, compute 
their dot products, and arrange the 

results back into a matrix.
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But there’s a problem!



[ , , ,
, , ]

× =

≠ The values are 
correct, but the 

shape is missing!



[ , , ,
, , ]



[ , , ,
, , ]

⏪



[ ,( ), ( ), (, , ),

), (, , ), ( ),(

map dot-product

]

⏪



[ ,( ), ( ), (, , ),

), (, , ), ( ,( )]

⏪



[ , ]×[ , , ]

⏪



[ , ]×[ , , ]

⏪⏸



[ , ]×[ , , ]

⏪⏸
Shape information is 

present here…



[ , ]×[ , , ]

⏪⏸▶
Shape information is 

present here…



[ ,( ), ( ), (, , ),

), (, , ), ( ,( )]

▶



[ ,( ), ( ), (, , ),

), (, , ), ( ,( )]

▶
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Cartesian product destroys 
our shape information!
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We introduce a new 
Cartesian product 

operator
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But now, map 
operator maps over 
wrong dimension!
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Shape information 
is preserved!
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which dimensions are computed on…

…but if tensor shapes change, we’ll need entirely new operators!

Can we encode this in the tensor itself?
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access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of 
4-length vectors

A scalar-shaped 
tensor of a single 

(3,4)-shaped tensor
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Same tensor, three possible views!





We can redefine common tensor and list operators 
with access pattern semantics—details in paper!
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Given matrices A and B, pair each row 
of A with each column of B, compute 
their dot products, and arrange the 

results back into a matrix.



(compute dotProd          
 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((3), (4))



(compute dotProd          
 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((3), (4))
Access A as a list of its rows



(compute dotProd          
 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))

;   ((3), (4))



(compute dotProd          
 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))
;   ((2), (4))

;   ((3), (4))



(compute dotProd          
 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))
;   ((2), (4))

;   ((3), (4))
Access B as a list 
of its rows, then 
transpose into a 

list of its columns



(compute dotProd          
 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))
;   ((2), (4))
;   ((3), (4))
;   ((3, 2), (2, 4))



(compute dotProd          
 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))
;   ((2), (4))
;   ((3), (4))
;   ((3, 2), (2, 4))

Create every row–column pair 



(compute dotProd          
 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))
;   ((2), (4))
;   ((3), (4))
;   ((3, 2), (2, 4))
;   ((3, 2), ())



(compute dotProd          
 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))
;   ((2), (4))
;   ((3), (4))
;   ((3, 2), (2, 4))
;   ((3, 2), ())

Compute dot product of every row–column pair 
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Inputs: image/activation tensor 
and a list of weight/filter tensors









Filter and region of image are 
elementwise multiplied and the 

results are summed









[
[

One output channel for each input filter
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Access activations as a vector of 3D images

;   ((N), (C, H, W))
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Form windows over input images
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These parameters control 
window shape and strides

;   ((N), (C, H, W))
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At each location in the new image, 

there is a (C, Kh, Kw)-shaped window
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SCompute dot product of each window–filter pair
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;   ((N, O, H’, W’), ())
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It reads an entire weight 
array of shape rows by cols. 

It then pushes n vectors of 
length rows through the array.

It computes the dot product 
of every vector with every 

column of the weights.

Finally, it writes out n 
vectors of length cols.





Can we represent  hardware 
as a searchable pattern?



(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

With Glenside, we can!



(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

(systolicArray ?rows ?cols ?a0 ?a1)

We can directly rewrite  to hardware invocations!
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  1) 
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(compute dotProd 

 (cartProd               

  (access A 1) 

  (transpose             

   (access B 1)    

   (list 1 0))))

A 3-length vector of 4-
length vectors

Convolution and matrix 
multiplication have 

similar structure!
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(compute dotProd 
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  where ?a0 is of shape  
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  and ?a1 is of shape 
   ((?cols), (?rows)) 

Can we apply our hardware rewrite?
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; ((O), (C, Kh, Kw)) Our access pattern shapes do not 
pass the rewrite’s conditions
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Can we flatten our access patterns?



?a → (reshape (flatten ?a) ?shape)

Flattens and immediately reshapes an access pattern
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But our access pattern shapes haven’t changed!
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     (shape 1 Sh Sw))) ?shape0) 
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  1) 

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))
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We need to “bubble” the reshapes to the top



(cartProd 
 (reshape ?a0 ?shape0) 
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd  
 (reshape ?a ?shape))   → (reshape (compute dotProd ?a) ?newShape)

These rewrites “bubble” reshape through cartProd and compute dotProd
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     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) 
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; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

reshapes have been moved out, and the access patterns are flattened!
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(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

Our systolic array rewrite can 
now map convolution to matrix 

multiplication hardware!



(cartProd 
 (reshape ?a0 ?shape0) 
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd  
 (reshape ?a ?shape))   → (reshape (compute dotProd ?a) ?newShape)

?a → (reshape (flatten ?a) ?shape)

These rewrites rediscover the im2col transformation!
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In conclusion,

we have presented access patterns as a new tensor representation

and have shown how they enable hardware-level tensor program rewriting.
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Thank you!


