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To discuss how we’ll generate compiler backends from formal models of hardware, we first need to talk about compilers themselves.
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compiler

So…this is a compiler.

What does a compiler do?



compiler

code

4machine code

A compiler translates high-level code down to machine code that can be run on hardware.



compiler frontend

code

5machine code

target-independent 
optimization

compiler backend

…

Compilers are generally composed of a few layers: a frontend, some target independent optimization, and finally, a backend.

(Build)

The compiler backend is what does target-specific optimization and code generation for the target hardware.
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code

5machine code

target-independent 
optimization

compiler backend

…

Target-specific optimizations 
and code generation
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code from previous 
compiler stage

machine code

compiler backend

The compiler backend produces machine code,

(Build)

Which is what runs on the target hardware.

(Build)

Our focus today will be on compiler backends and the hardware they target.
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code from previous 
compiler stage

machine code

compiler backend
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code from previous 
compiler stage

machine code

compiler backend
Our focus!
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code from previous 
compiler stage

machine code

compiler backend

To compile to hardware, the compiler backend needs to know about the underlying hardware its compiling to.
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code from previous 
compiler stage

machine code

compiler backend

In reality, this is implemented by building models of the target hardware into the components of the compiler.

(Build)

For example, the memory planning component of the compiler will contain a model of the hardware’s memory hierarchy,

(Build)

While the instruction selector will contain a model of the hardware interface or ISA.



8

code from previous 
compiler stage

machine code

compiler backend

memory planning
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code from previous 
compiler stage

machine code

compiler backend

memory planning instruction selector
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code from previous 
compiler stage

machine code

compiler backend

Importantly, though, these models of the underlying hardware are generally implicit. They are not explicitly coded descriptions or simulators of the underlying hardware, 
but instead, implicit descriptions like heuristics and hard-coded optimizations.
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In this paper, the authors perform a study of how various minor code transformations affect the quality of output of major compilers GCC, ICC, and Clang. They find that 
small changes in the input program lead to large changes in the performance of the compiled result. One of their conclusions is that

(Build)

Inaccurate  vectorization models in these major compilers are a primary source of low-quality compiler results.

These vectorization models, which are heuristics for when code should be vectorized for a specific architecture, are a great example of implicit hardware models that 
exist in major compilers.



10

Inaccurate vectorization models are a primary source of low-quality compiler results!
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code from previous 
compiler stage

machine code

compiler backend

So, as this paper highlights, relying on implicit models in compilers can produce

(Build)

Imperfectly optimized, non-performant code.

But this is not the only downside of implicit models.
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code from previous 
compiler stage

machine code

compiler backend
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code from previous 
compiler stage

machine code

compiler backend

Implicit models also cause many headaches during development. Modifying implicit models often requires the time and attention of experts, as it can be unclear where 
modifications need to be made, and modifications can have unintended side affects.
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code from previous 
compiler stage

machine code

compiler backend

Lastly and most importantly, implicit models can be an insidious source of bugs. If the implicit models are incorrect, then the code they generate will be buggy. Worse 
still, fixing bugs in these implicit models is made harder by the fact that they are implicit.
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compiler backend

Implicit hardware models in compiler 
backends are potential sources of
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compiler backend

Implicit hardware models in compiler 
backends are potential sources of

imperfect optimization,
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compiler backend

Implicit hardware models in compiler 
backends are potential sources of

imperfect optimization,
difficulties in development,
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compiler backend

Implicit hardware models in compiler 
backends are potential sources of

imperfect optimization,
difficulties in development,

and hard-to-find bugs! 



This leads directly to my thesis!
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Automatically generating compiler backends 
from explicit, formal hardware models 

16

I hypothesize that…


…that is, the optimizer is able to automatically compose small facts about the underlying hardware into large and complex optimizations.



Automatically generating compiler backends 
from explicit, formal hardware models 

• gives rise to emergent optimizations,
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Automatically generating compiler backends 
from explicit, formal hardware models 

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification. 

16

optimizer discovers optimizations that 
are not explicitly programmed
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This thesis is very much so in line with a lot of Norman Ramsey’s work on automatically generated instruction selectors.

(Build)

However, unlike Ramsey, we will be applying these ideas not on CPUs, but on fixed function accelerators, and programmable hardware.
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Unlike Ramsey, we will focus not on CPUs, but on fixed-
function accelerators and programmable hardware!



Structure of this talk
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So let’s discuss the structure of this talk.



What I’ll show

How I’ve shown it so far

How I’ll finish

Introduction

Thesis

Glenside

Glenside in the 3LA Project

Lakeroad Introduction

Lakeroad pt. 1

Lakeroad pt. 2

19

I’ve broken this talk into three primary sections:

What I’ll show: namely, my stated thesis,

How I’ve shown it so far, which is the work I’ve already done towards demonstrating this thesis,

And

How I’ll finish, which is where I propose my final project.
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Glenside in the 3LA Project

So I just finished explaining what I will show;

Now, let’s jump into how I’ve shown it so far.



Glenside

21

With that, let’s talk about glenside. 
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Gus Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan, 
Michael Taylor, Luis Ceze, and Zachary Tatlock.  
"Pure tensor program rewriting via access patterns (representation pearl).” MAPS 2021.

This work was done with my colleagues here at UW and was published at MAPS 2021.
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Because we’re about to get a bit into the weeds, I want to first summarize the high-level story of Glenside. 



Glenside is a tensor IR* built for equality saturation.

23* intermediate representation



Glenside is a tensor IR* built for equality saturation.

Glenside enables users to model hardware 
accelerators as program rewrites.

23* intermediate representation



Glenside is a tensor IR* built for equality saturation.

Glenside enables users to model hardware 
accelerators as program rewrites.

These rewrites, in concert with Glenside’s built-in 
rewrites, automatically discover ways to map 
machine learning workloads to accelerators.

23* intermediate representation
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When we began designing glenside, we had three primary requirements

First, the language must be pure, 

Second, the language must be low-level, so that we can actually reason about hardware.

And lastly, the language should avoid binding, which makes term rewriting much easier.




Three design requirements for Glenside:
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Three design requirements for Glenside:

1. The language must be pure—a necessary requirement for equality saturation.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

24



Let’s begin with an example: 
matrix multiplication!

25

So, as always, I think it’s easiest to start with an example.

So let’s begin with the most common kernel in deep learning —matrix multiplication!
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Remember, our goals are to represent multiplication in a way that…



We want to represent matrix multiplication in a way that

26



We want to represent matrix multiplication in a way that

1. is pure,
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We want to represent matrix multiplication in a way that

1. is pure,

2.  is low-level, and
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We want to represent matrix multiplication in a way that

1. is pure,

2.  is low-level, and

3.  avoids binding.

26



Given matrices A and B, pair each row of A with 
each column of B, compute their dot products, 

and arrange the results back into a matrix.

27

Just to remind ourselves, here is the matrix multiplication algorithm. Given matrices A and B…
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This simple English description of the algorithm immediately suggests a possible pure, low-level, binder-free implementation.



[ , ][ , , ]

View matrices as lists of rows/columns
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First, we view the matrix A, on the left, as a list of its rows, and the matrix B, on the right, as a list of its columns.



[ , ][ , , ]

View matrices as lists of rows/columns
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[ , ]×[ , , ]

Take their 
Cartesian product

30

We then pair each row from A with each column from B by taking the Cartesian product of the two lists.



[ ,( ), ( ), (, , ),

), (, , ), ( ,( )]

Every row paired 
with every column

31

The result is a list of row-column pairs. 



[ ,( ), ( ), (, , ),

), (, , ), ( ),(

map dotProd

]

Map dot product 
operator over every 

row–column pair
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Finally, we map the dot product operator over this list of row-column pairs.



[ , , ,
, , ]

33

Our result is a list of scalar values!



But there’s a problem!
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But there’s a problem



[ , , ,
, , ]

× =

≠ The values are 
correct, but the 

shape is missing!
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A 2D matrix times a 2D matrix should produce a 2D matrix.

However, our algorithm produces a one-dimensional list of values!

Even if the values are correct, we’re missing a core piece of information: the shape!



[ , , ,
, , ]
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Let’s step back in time to understand where the shape information got lost.



[ , , ,
, , ]

⏪
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[ ,( ), ( ), (, , ),

), (, , ), ( ),(

map dot-product

]
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⏪

By the time we’re mapping the dot product operator over our list, the list is already a flat list of pairs.



[ ,( ), ( ), (, , ),

), (, , ), ( ,( )]
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⏪

As is the case in the step before.



[ , ]×[ , , ]

⏪

39

But at this step, just before we take the cartesian product, all of the original shape information seems to be present.

Specifically, we still have A and B in their two dimensional forms, as a list of rows and columns, respectively.

So shape information is present here, but when we step forward again…



[ , ]×[ , , ]

⏪⏸
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[ , ]×[ , , ]

⏪⏸
Shape information 
is present here…
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[ , ]×[ , , ]

⏪⏸▶
Shape information 
is present here…
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[ ,( ), ( ), (, , ),

), (, , ), ( ,( )]

▶

40

…the shape information is lost.

Our 2D matrices have been flattened into a one-dimensional list, with no way to recover the shapes of the original matrices.



[ ,( ), ( ), (, , ),

), (, , ), ( ,( )]

▶

…but absent here!

40



Cartesian product destroys our 
shape information!

41

So it seems that the Cartesian product operator is destroying our shape information!



[ , ]×2D[ , , ]

We introduce a new 
Cartesian product 

operator
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Thus, we introduce a new, two dimensional Cartesian product operator.
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(
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2D Cartesian product 
operator preserves 

shape info
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This new cartesian product operator preserves shape information. 

Now, the cartesian product of the three rows of A and the two columns of B are a three-by-two matrix of pairs.
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map dotProd
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But now, when we try to  map our  dot  product operator over our new list, we run into another problem.
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dotProd

dotProd

dotProd

But now, map 
operator maps over 
wrong dimension!
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Our map operator maps the dot product over the wrong dimension!
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map2D dotProd

We also need a 
new map operator
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Thus, we also introduce a new map operator.
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dotProd[

[ (dotProd

2D map operator 
maps over correct 

dimension 47

This  map operator knows to map the dot product two dimensions deep, correctly   mapping the dot product onto the row-column  pairs.



[ , ]

]

[ ,
, ][ ,

, ][
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Finally, we get out what we expected:
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A two dimensional matrix!



Shape information 
is preserved!

49



50

So what happened here?

Cartesian product 2D and map 2D hard-code which dimensions are iterated over and which dimensions are computed on.

But if the shapes of A and  B change, we’ll need entirely new operators, for example, map3D.

So can we encode this information—that is, which  dimensions are iterated over and which dimensions are computed on—directly in the tensor itself?

Unsurprisingly, the answer is yes!

This is exactly what access patterns do.



×2D and map2D hard-code which dimensions are iterated over and 
which dimensions are computed on…
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×2D and map2D hard-code which dimensions are iterated over and 
which dimensions are computed on…

…but if tensor shapes change, we’ll need entirely new operators!

Can we encode this in the tensor itself?

(Yes! This is what Glenside’s access patterns do!)

50



A tensor looks like…

51

(3, 4)

Access patterns are the core innovation of Glenside.

Access patterns simply add a bit more information on top of a traditional tensor.

Whereas a tensor is defined by a tuple of integers called a shape—in this case, three comma four…



[
,

,
]

((3), (4))A 3-length vector of 
4-length vectors

A 3-length vector of 
4-length vectors

An access pattern looks like…

52

An access pattern is defined by a pair of tuples, where the first tuple holds the access dimensions, or the dimensions that are iterated over, and the second tuple holds 
the compute dimensions, or the dimensions which are computed on.

Concatenating the tuple gives the shape of the underlying tensor.

An access pattern simply represents a view over a tensor, conveying how an algorithm computes over the tensor.

For example, this access pattern is viewing our three comma four shaped tensor as a three-length vector of four length  vectors.

But if we shift the dimensions of the access pattern over,



[
,

,
]

((3), (4))

access dimensions 
(iterated over)

A 3-length vector of 
4-length vectors

A 3-length vector of 
4-length vectors

An access pattern looks like…
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((3), (4))

access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of 
4-length vectors

A 3-length vector of 
4-length vectors

An access pattern looks like…
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[ ], , ,

[ ], , ,

An access pattern looks like…

53

((3, 4), ( ))

access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of 
4-length vectors
A (3, 4)-shaped 

tensor of scalars

We can view the same tensor as a three-comma-four shaped tensor of scalars.

And if we shift the dimensions in the other direction, 



An access pattern looks like…
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(( ), (3,4))

access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of 
4-length vectors

A scalar-shaped 
tensor of a single 

(3,4)-shaped tensor

We can view the tensor as a scalar-shaped tensor, in which that quote unquote scalar, i.e. a single element, is a single three-comma-four shaped tensor. 



(( ), (3,4)) ((3,4), ( ))

[
,

,
]

[ ], , ,

[ ], , ,

[ ], , ,

[
,

,
]

((3), (4))

Same tensor, three possible views!Same tensor, three possible views!Same tensor, three possible views!
55

Thus, each of these different access patterns represents a different view of the same underlying tensor, each view being potentially useful depending on the algorithm 
processing the tensor.



We redefine common tensor and list operators with access pattern 
semantics, which gives us the Glenside IR!

56

Now, once we’ve defined access patterns, we can redefine a bunch of common tensor and list operators using access pattern semantics—all of these operators 
collectively form the Glenside IR. There’s a bunch of detail about the operators in the paper, and we’ll see a few of them in our case studies.



57Smith, Gus Henry, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan, Michael Taylor, Luis Ceze, and Zachary Tatlock.  
"Pure tensor program rewriting via access patterns (representation pearl)." MAPS 2021.

Glenside can represent common kernels in machine learning.

And then once we define Glenside, we can use it to represent common kernels in machine learning. Not just matrix multiplication, but more complex kernels like 1, 2, and 
3d convolution.



58

So we’ve defined Glenside, and we see that it can be used to represent kernels in deep learning.



But how is Glenside useful?

58



But how is Glenside useful?
More importantly, how does it demonstrate my thesis?
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Glenside in the 3LA project

59

To answer that, we’re going to move to the next section of my talk, where I talk about Glenside’s in a project called 3LA



What I’ll show

How I’ve shown it so far

How I’ll finish

Introduction

Thesis

Glenside

Lakeroad Introduction

Lakeroad pt. 1

Lakeroad pt. 2
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Glenside in the 3LA Project

So just to keep the map in mind, we’re moving on to the last part of how I’ve shown my thesis so far.
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Bo-Yuan Huang, Steven Lyubomirsky, Yi Li, Mike He, Thierry Tambe, Gus Smith, Akash Gaonkar, Vishal Canumalla,  
Gu-Yeon Wei, Aarti Gupta, Zachary Tatlock, Sharad Malik   
"Specialized Accelerators and Compiler Flows: Replacing Accelerator APIs with a Formal Software/Hardware Interface." arXiv 2022.

3LA is a collaborative project between us here at UW and our colleagues at Princeton and Harvard.

We are currently resubmitting the work to ASPLOS, but for now, we have a paper on Arxiv.
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To save time, I’m not going to go into too much detail about the internals of 3LA; instead, I’m mostly going to focus on Glenside’s role.

However, I wanted to begin by giving the high-level motivation for 3LA.



Simulating, verifying, and compiling workloads on custom 
accelerators is hard.
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3LA is a toolkit which makes it easier, by compiling 
workloads to the ILA simulation and verification 

framework.
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Simulating, verifying, and compiling workloads on custom 
accelerators is hard.

3LA is a toolkit which makes it easier, by compiling 
workloads to the ILA simulation and verification 

framework.

Glenside is a key component of 3LA, where it is used to 
discover mappings of workloads to accelerators. 

62



Huang, B. Y., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., & Malik, S. (2019). Instruction-level abstraction (ILA): A uniform specification 
for system-on-chip (SOC) verification. ACM Transactions on Design Automation of Electronic Systems, 24(1), [10]. https://doi.org/
10.1145/3282444

63

The Instruction Level Abstraction, or ILA, is a specification system developed by our collaborators at Princeton. ILA allows hardware developers to formally specify the 
behavior of their hardware by defining an ISA-like interface.

This interface is portable across platforms, easy to target from compilers, and provides both verification and simulation abilities out of the box.




Huang, B. Y., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., & Malik, S. (2019). Instruction-level abstraction (ILA): A uniform specification 
for system-on-chip (SOC) verification. ACM Transactions on Design Automation of Electronic Systems, 24(1), [10]. https://doi.org/
10.1145/3282444

Allows hardware developers to specify 
ISA-like interface for their design
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Huang, B. Y., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., & Malik, S. (2019). Instruction-level abstraction (ILA): A uniform specification 
for system-on-chip (SOC) verification. ACM Transactions on Design Automation of Electronic Systems, 24(1), [10]. https://doi.org/
10.1145/3282444

Allows hardware developers to specify 
ISA-like interface for their design

Portable, compiler-friendly, and provides verification and simulators out of the box!
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3LA

Models ??? ILA instructions

64

The core goal of the 3LA project is to compile deep learning workloads down to ILA instructions, so that we can do simulation, verification, and compilation to our 
custom hardware.

But the question of how to actually map the computations within deep learning models down to ILA instructions

(Build)

Is not an easy problem.

(Build)

And a spoiler alert here: we’re going to use Glenside to solve this problem. 

But first, let’s talk about what we tried before Glenside.
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3LA

Models ??? ILA instructions
Not an easy problem!

(Spoiler: we use Glenside!)

64
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Can we use TVM’s Bring Your Own Codegen?

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang.  
"Bring Your Own Codegen to Deep Learning Compiler." arXiv 2021.

Before using glenside to map models down to accelerators, we attempted to use TVM’s bring your own codegen, or BYOC.

BYOC allows you to match patterns

(Build)

Such as this, within machine learning models.

This pattern matches what’s called linear layer: a dense followed by a bias_add.



bias_add(dense(*, *), *))
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Can we use TVM’s Bring Your Own Codegen?

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang.  
"Bring Your Own Codegen to Deep Learning Compiler." arXiv 2021.



bias_add(dense(*, *), *))

Matches a linear layer: a dense followed by a bias addition.

65

Can we use TVM’s Bring Your Own Codegen?

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang.  
"Bring Your Own Codegen to Deep Learning Compiler." arXiv 2021.



EfficientNet MobileNet V2 ResMLP ResNet-20 Transformer

VTA 0 1 38 2 66

FlexASR 0 0 0 2 0

Moreau, Thierry, et al. "VTA: an open hardware-software stack for deep learning." arXiv preprint arXiv:1807.04188 (2018).
T. Tambe et al., "9.8 A 25mm2 SoC for IoT Devices with 18ms Noise-Robust Speech-to-Text Latency via Bayesian Speech Denoising and Attention-Based Sequence-to-Sequence DNN 
Speech Recognition in 16nm FinFET," 2021 IEEE International Solid- State Circuits Conference (ISSCC), 2021, pp. 158-160, doi: 10.1109/ISSCC42613.2021.9366062. 66

Using BYOC, we attempt to map five workloads to two different accelerators: VTA and FlexASR, which both accelerate linear layers. As you can see, with the exception 
of ResMLP and Transformer on VTA, BYOC finds very few mapping opportunities. And, as we’ll see, it’s not because the opportunities aren’t there!



%242 = dense(%240, %241, units=10); 
add(%242, %linear_bias)

67

Why aren’t we finding many matches? In many cases, it is because of simple mismatches. For example, this snippet of code from Mobilenet represents a linear layer, yet 
it will not match our pattern

(Build)

 as the add should be a bias_add.


Many small mismatches like this exist within the workloads. One solution would be to write additional BYOC patterns, to match the subtle variations in the workload. 

(Build)

But a more sustainable solution would be to somehow make these rewrites more flexible.



%242 = dense(%240, %241, units=10); 
add(%242, %linear_bias)

Won’t match—this should be a bias_add!
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%242 = dense(%240, %241, units=10); 
add(%242, %linear_bias)

Won’t match—this should be a bias_add!
If only these rewrites were more flexible…
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Let’s use Glenside and equality 
saturation!

68

This is where we will use Glenside.



Models

(equality saturation via egg)

Glenside ILA instructions

Gus Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan, Michael Taylor, Luis Ceze, and Zachary Tatlock. 
"Pure tensor program rewriting via access patterns (representation pearl)." MAPS 2021.

Flexible matching: using small exploratory rewrites, 
we expose many more possible mappings!

69

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

Using Glenside and equality  saturation, we implement what we call flexible matching, where small exploratory rewrites provided by Glenside expose many more possible 
hardware mappings.



What is equality saturation?
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Basic idea:

71Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization." 
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.
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71Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization." 
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.
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Basic idea:
instead of destructively rewriting a program 

with a predetermined list of program rewrites,
run all rewrites simultaneously and repeatedly,
and keep all of the discovered versions of the 

program!

71Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization." 
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.



Basic idea:
instead of destructively rewriting a program 

with a predetermined list of program rewrites,
run all rewrites simultaneously and repeatedly,
and keep all of the discovered versions of the 

program!

71

Enabled by the equality graph, or egraph, data structure!

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization." 
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.



72Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

So let’s look at a simple example. Imagine we have a small math language with the following rewrites.

We know that x times 1 equals 1.

We know that x divided by x also equals 1.

We know that x times two can be implemented as x left shifted by 1.

And finally, we know that we can re-associate multiplication and division.




72Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

x * 1 ==> 1
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x / x ==> 1

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

x * 1 ==> 1
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x / x ==> 1

x * 2 ==> x << 1

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

x * 1 ==> 1
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x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

x * 1 ==> 1
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a

*

2

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a * 2)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

So let’s use these rewrites to simplify a times two divided by two down to

(Build)

a.
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a

*

2

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a * 2)/2 == a

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
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a

*

2

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a * (2/2)

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

First, we reassociate the multiplication and the division, so that we have two-divided by two.
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a

*

1

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a * 1

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

Then, we simplify two divided by two.
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a

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

Finally, we simplify a times 1 to just a.



But what if rewrites ran in a 
different order?

77
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a

*

2

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a * 2)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

Imagine for example…
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a

<<

1

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a << 1)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

That we ran this rewrite first, and converted a times two to a left shifted by one.

Well at this point, we’re stuck! We can’t do any more rewrites, and we won’t be able to simplify this expression.
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a

<<

1

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a << 1)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

We’re stuck!



Ordering matters because 
rewrites are destructive.
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Ordering matters because 
rewrites are destructive.
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This is called the phase ordering problem!



So why not keep around all 
discovered versions of the program?
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So why not keep around all 
discovered versions of the program?

81

This is what egraphs do!



82Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a * 2)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

a

*

2

/

2

Using an egraph, when we apply our rewrite to a times 2,



83Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a

*

2

/

2x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
<<

1

(a << 1)

We still get our a left shifted by 1 expression, but

(Build)

We keep around the a times two expression!

As a result

(Build)
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"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a

*

2

/

2x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
<<

1

(a * 2)(a << 1)



83Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a

*

2

/

2x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
<<

1

(a * 2)(a << 1)

We can fire the rewrites in any order—
all discovered programs will be kept!



84Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

https://egraphs-good.github.io/

This is implemented within a library called egg, developed here at UW by Max Willsey.

https://egraphs-good.github.io/


Models

(equality saturation via egg)

Glenside ILA instructions

Flexible matching: using small exploratory rewrites, 
we expose many more possible mappings!

85

So coming back to 3LA. Equality saturation allows us to use small exploratory rewrites to discover many equivalencies within the egraph, which expose more possible 
mappings down to hardware.
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So what do these rewrites look like?

Well, we have two types of rewrites.

(Build)

The first type of rewrite capture accelerator semantics as rewrites which rewrite glenside expressions to accelerator calls, and

(Build)

The second type of rewrite, our exploratory rewrites, are just general purpose rewrites over Glenside, provided by Glenside itself!
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(compute dot-product (access-cartesian-product ?x ?w)) 
  => (accelerator-call vta-dense ?x ?w)

(compute reduce-max (access-windows ?a (shape 2) (shape 2))) 
  => (accelerator-call flex-maxpool ...)

(bias-add (dense ?x ?w) ?bias ?axis) 
  => (accelerator-call flex-linear ?x ?w ?bias)

We capture accelerator semantics as program rewrites…
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(compute dot-product (access-cartesian-product ?x ?w)) 
  => (accelerator-call vta-dense ?x ?w)

(compute reduce-max (access-windows ?a (shape 2) (shape 2))) 
  => (accelerator-call flex-maxpool ...)

(bias-add (dense ?x ?w) ?bias ?axis) 
  => (accelerator-call flex-linear ?x ?w ?bias)

We capture accelerator semantics as program rewrites…

…and our exploratory rewrites are general-purpose rewrites over Glenside!

(cartProd (reshape ?a0 ?shape0) (reshape ?a1 ?shape1)) 
  => (reshape (cartProd ?a0 ?a1) ?newShape)
(compute dotProd (reshape ?a ?shape)) 
  => (reshape (compute dotProd ?a) ?newShape)

?a => (reshape (flatten ?a) ?shape)

?x => (relay-operator-call bias-add ?x  
       (relay-operator-call zeros (shape ...)) 1)

...
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…… …

So what does it look like when we actually run these rewrites?
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……… …

The exploratory rewrites will learn equivalencies about our deep learning model, and eventually,
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……… … …
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……… … …



91

……… … ………



EfficientNet MobileNet V2 ResMLP ResNet-20 Transformer

VTA 0 → 35 1 → 41 38 2 → 22 66

FlexASR 0 → 35 0 → 41 0 → 38 2 → 22 0 → 66

92

With flexible matching, we can drastically increase the number of matches for each workload on each accelerator over BYOC.



(cartProd (reshape ?a0 ?shape0) (reshape ?a1 ?shape1)) 
  → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd (reshape ?a ?shape)) 
  → (reshape (compute dotProd ?a) ?newShape)

?a → (reshape (flatten ?a) ?shape)

These rewrites rediscover the im2col 
transformation, without explicitly encoding it!

93

One example of a mapping that Glenside finds is the im2col transformation, which allows complex kernels like 2d convolution to be run on matrix multiplication 
accelerators. 

This mapping is uncovered by these three exploratory rewrites, which are general purpose rewrites over Glenside itself. These rewrites do not explicitly encode the im2col 
transformation, but when used all together, they emergently rediscover the transformation.
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So that is the 3LA project. 

(Build)

But what does it show about Glenside?



What does it show about 
Glenside?
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Automatically generating compiler backends 
from explicit, formal hardware models  

• gives rise to emergent optimizations, 
• reduces development time, and 
• enables verification. 
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Automatically generating compiler backends 
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• gives rise to emergent optimizations, 
• reduces development time, and 
• enables verification. 
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im2col



Automatically generating compiler backends 
from explicit, formal hardware models  

• gives rise to emergent optimizations, 
• reduces development time, and 
• enables verification. 

95

im2col

Writing rewrites is simpler than 
writing a mapper from scratch!



Automatically generating compiler backends 
from explicit, formal hardware models  

• gives rise to emergent optimizations, 
• reduces development time, and 
• enables verification. 

95

im2col

Writing rewrites is simpler than 
writing a mapper from scratch!

Via mapping to ILA!



What I’ll show

How I’ve shown it so far

How I’ll finish

Introduction

Thesis

Glenside

Lakeroad Introduction

Lakeroad pt. 1

Lakeroad pt. 2

96

Glenside in the 3LA Project



Lakeroad

97
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…… …

Let’s recall what is happening within Glenside as we’re running rewrites and searching for hardware mappings.

As we run rewrites, we are discovering equivalencies within the egraph.
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……… …
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……… … …



102

……… … …

And eventually, we find places to map in calls to our hardware
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……… … ………



103

……… … ………

Accelerator calls are 
predetermined; we’re 

just searching for them!
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Accelerator calls are 
predetermined; we’re 

just searching for them!

But we have all of these other 
interesting equivalencies we’ve 

discovered…



103

……… … ………

Accelerator calls are 
predetermined; we’re 

just searching for them!

But we have all of these other 
interesting equivalencies we’ve 

discovered…

What if we could use the 
information in the egraph to tell 

us which hardware to make?
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……… … ………

Accelerator calls are 
predetermined; we’re 

just searching for them!

But we have all of these other 
interesting equivalencies we’ve 

discovered…

What if we could use the 
information in the egraph to tell 

us which hardware to make?

new! new!
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This is the core idea behind lakeroad.

(Build)



Lakeroad uses similar techniques to 
Glenside (i.e. equality saturation) to map 

computation to custom hardware—in this 
case, FPGAs.

104



Lakeroad uses similar techniques to 
Glenside (i.e. equality saturation) to map 

computation to custom hardware—in this 
case, FPGAs.

However, Lakeroad additionally uses what 
it discovers to propose entirely new 

hardware primitives!
104



What are FPGAs?

105



Field Programmable Gate Array

106

Fpga stands for field programmable gate array



Field Programmable Gate Array

106

i.e. easily reprogrammable!



Field Programmable Gate Array

106

i.e. easily reprogrammable!

filled with logic gates 
(and nowadays, much more!)
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FPGAs are composed of three primary types of devices:

First and most importantly, logic gates, from which FPGAs get their names. 

Second, memory. There are memory units scattered throughout the device.

Lastly, digital signal processors or DSPs. These are more complex computational units; often they are small programmable processors! They can implement complex 
datatypes like floating point or bfloat.
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Programmable Logic



108

Programmable Logic
Memory



108

Programmable Logic
Memory

DSPs
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For the purposes of this proposal, we will be focusing only on the programmable logic. Don’t get me wrong: DSPs and memory are crucial in implementing good 
hardware designs, but for this proposal, we will test our ideas on programmable logic.


So what is programmable logic? In most cases, it is not and and or gates like I have shown here, but instead, hardware blocks called look-up tables.

(Build)

A look up table is just that—a table.

It takes some number of inputs and outputs some number of outputs, in this case, four inputs and one output.

Based on the inputs, it just looks up the output in its internal table.

(Build)


In this case, we’ve programmed this lookup table to implement  an and on i0 and i1.


(Build)

Lookup tables come in all shapes and sizes: for example, the lookup tables on the Xilinx Ultrascale+ FPGA architecture have six inputs and two outputs.
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i3 i2 i1 i0 o
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
… … … … …
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i3 i2 i1 i0 o
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
… … … … …
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i3 i2 i1 i0 o
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
… … … … …
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i3 i2 i1 i0 o
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
… … … … …
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i3 i2 i1 i0 o
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
… … … … …
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i3 i2 i1 i0 o
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
… … … … …

Xilinx UltraScale+
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Now, let’s get into how designs are compiled for FPGAs.



Current FPGA compilers are slow 
and unpredictable.

110



Lavin, Chris, and Alireza Kaviani. "RapidWright: Enabling custom crafted implementations for FPGAs." 2018 IEEE 
26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2018.

“UltraScale+ devices employ DSP blocks that are rated 
at 891MHz for the fastest speed grade. Nonetheless, 
large designs implemented on FPGAs typically achieve 
system frequencies lower than 400MHz.”

111

In a paper written by Xilinx engineers, the authors state.


So things must be pretty bad if Xilinx engineers themselves are bemoaning the fact that FPGA compilers fail to compile effectively for their hardware!



behavioral Verilog 

gate-level representation 

FPGA-level Verilog
level of abstraction

112

The reason for the poor performance of FPGA compilers is that, among other reasons, FPGA compilers perform a complex dance, in which they compile the input 
hardware design from high-level behavioral verilog all the way down to a low level gate representation, and then attempt to raise it back up to the level of abstraction of 
FPGAs.



Recent works (Reticle!) have attempted a 
more direct, software-compiler-like approach.

113



behavioral Verilog 
level of abstraction

114
Callahan, Timothy J., Philip Chong, Andre DeHon, and John Wawrzynek. “Fast module mapping and placement for datapaths in FPGAs." FPGA 1998.

Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. "Reticle: a virtual machine for programming modern FPGAs." PLDI 2021.
Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz, Jack Koenig, Chris Lattner, Andrew Lenharth et al. 
"MLIR as Hardware Compiler Infrastructure." WOSET 2021.



behavioral Verilog 

FPGA-level Verilog

level of abstraction

114
Callahan, Timothy J., Philip Chong, Andre DeHon, and John Wawrzynek. “Fast module mapping and placement for datapaths in FPGAs." FPGA 1998.

Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. "Reticle: a virtual machine for programming modern FPGAs." PLDI 2021.
Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz, Jack Koenig, Chris Lattner, Andrew Lenharth et al. 
"MLIR as Hardware Compiler Infrastructure." WOSET 2021.



behavioral Verilog 

FPGA-level Verilog

level of abstraction
intermediate representation (IR)

…

115
Callahan, Timothy J., Philip Chong, Andre DeHon, and John Wawrzynek. “Fast module mapping and placement for datapaths in FPGAs." FPGA 1998.

Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. "Reticle: a virtual machine for programming modern FPGAs." PLDI 2021.
Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz, Jack Koenig, Chris Lattner, Andrew Lenharth et al. 
"MLIR as Hardware Compiler Infrastructure." WOSET 2021.



To implement this, we need an FPGA 
“ISA”: the lowest-level IR which gets 

converted to FPGA-ready Verilog. 
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behavioral Verilog 

FPGA-level Verilog

level of abstraction

FPGA ISA

…
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New FPGA compiler toolchains 
specify their ISAs explicitly!
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Reticle compiles designs to these ISA 
instructions, and then those instructions 
get converted to FPGA-specific Verilog.
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So we know ISAs are necessary for these new FPGA compilation toolchains.



But how do we choose the ISA?
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But how do we choose the ISA?
And how do we implement it?

122



But how do we choose the ISA?
And how do we implement it?

Currently: by hand!

122
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Why is choosing an ISA by hand bad?



Choosing ISAs by hand may 
leave gaps in the ISA.

123



124Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs." 
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.

A key optimization for FPGAs: packing or fusing LUTs!

A key optimization for FPGAs is packing or fusing lookup tables.

This diagram shows three lookup tables being used to implement the instructions a, b, and c.

(Build)

If the optimizer discovers that a and c can fit into a single lookup table,

(Build)

It will combine them! This is called packing or fusion.

This is a key optimization in improving FPGA performance and packing larger designs onto the FPGA.
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A key optimization for FPGAs: packing or fusing LUTs!

If A and C can fit in a single LUT…
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124Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs." 
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.

A key optimization for FPGAs: packing or fusing LUTs!

If A and C can fit in a single LUT… …combine them!

This requires us to have A,C in our ISA.
Do we also need A,B? Or B,C?

Think of all the possible combinations we will have to consider!



Choosing ISA by hand will miss 
many fused instructions.

125
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Okay, so choosing an ISA by hand is bad.



What about implementing ISAs?

126



Implementing ISAs by hand is 
infeasible for large ISAs—and a 

great source of bugs!
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8-bit add ISA instruction:

pat add_i8(a:i8, b:i8) -> (y:i8) {
    y:i8 = add(a, b) @lut;
}

128

This is an example from Reticle.

In Reticle, Luis has written rewrites which map high level Reticle constructs, such as this add,

(Build)

To low level, FPGA specific implementations of those constructs. This is that same add, implemented using eight lookup tables on a Xilinx FPGA.

(Build)

Luis wrote all of these rewrites by hand for Reticle!



8-bit add ISA instruction:

pat add_i8(a:i8, b:i8) -> (y:i8) {
    y:i8 = add(a, b) @lut;
}

Xilinx 7-series implementation of 8-bit add:

imp add_i8[1, 2](a:i8, b:i8) -> (y:i8) {
    t0:bool = ext[0](a);
    t1:bool = ext[1](a);
    t2:bool = ext[2](a);
    t3:bool = ext[3](a);
    t4:bool = ext[4](a);
    t5:bool = ext[5](a);
    t6:bool = ext[6](a);
    t7:bool = ext[7](a);
    t8:bool = ext[0](b);
    t9:bool = ext[1](b);
    t10:bool = ext[2](b);
    t11:bool = ext[3](b);
    t12:bool = ext[4](b);
    t13:bool = ext[5](b);
    t14:bool = ext[6](b);
    t15:bool = ext[7](b);
    t16:bool = lut2[6](t0, t8) @a6(??, ??);
    t17:bool = lut2[6](t1, t9) @b6(??, ??);
    t18:bool = lut2[6](t2, t10) @c6(??, ??);
    t19:bool = lut2[6](t3, t11) @d6(??, ??);
    t20:bool = lut2[6](t4, t12) @e6(??, ??);
    t21:bool = lut2[6](t5, t13) @f6(??, ??);
    t22:bool = lut2[6](t6, t14) @g6(??, ??);
    t23:bool = lut2[6](t7, t15) @h6(??, ??);
    t24:i8 = cat(t16, t17, t18, t19, t20, t21, t22, t23);
    y:i8 = carryadd(a, t24) @c8(??, ??);
} 128



8-bit add ISA instruction:

pat add_i8(a:i8, b:i8) -> (y:i8) {
    y:i8 = add(a, b) @lut;
}

Xilinx 7-series implementation of 8-bit add:

imp add_i8[1, 2](a:i8, b:i8) -> (y:i8) {
    t0:bool = ext[0](a);
    t1:bool = ext[1](a);
    t2:bool = ext[2](a);
    t3:bool = ext[3](a);
    t4:bool = ext[4](a);
    t5:bool = ext[5](a);
    t6:bool = ext[6](a);
    t7:bool = ext[7](a);
    t8:bool = ext[0](b);
    t9:bool = ext[1](b);
    t10:bool = ext[2](b);
    t11:bool = ext[3](b);
    t12:bool = ext[4](b);
    t13:bool = ext[5](b);
    t14:bool = ext[6](b);
    t15:bool = ext[7](b);
    t16:bool = lut2[6](t0, t8) @a6(??, ??);
    t17:bool = lut2[6](t1, t9) @b6(??, ??);
    t18:bool = lut2[6](t2, t10) @c6(??, ??);
    t19:bool = lut2[6](t3, t11) @d6(??, ??);
    t20:bool = lut2[6](t4, t12) @e6(??, ??);
    t21:bool = lut2[6](t5, t13) @f6(??, ??);
    t22:bool = lut2[6](t6, t14) @g6(??, ??);
    t23:bool = lut2[6](t7, t15) @h6(??, ??);
    t24:i8 = cat(t16, t17, t18, t19, t20, t21, t22, t23);
    y:i8 = carryadd(a, t24) @c8(??, ??);
}

Luis wrote all of these 
implementations by hand for Reticle!
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This is slow, especially if we have multiple 
backends and many fused instructions!
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So, can we do it automatically?
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We introduce Lakeroad, a tool for 
automatically defining and implementing 

ISAs for FPGAs.
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hardware 
designs 

ISA Exploration

ISA Implementation Synthesis

ISA Explorer ISA

ISA ISA Implementation Synthesizer ISA 
Implementation

Lakeroad is split into two halves: ISA exploration, which chooses an ISA, and ISA implementation synthesis, which, given an ISA, produces an FPGA-specific 
implementation.
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hardware 
designs 

ISA Exploration

ISA Implementation Synthesis

ISA Explorer ISA

ISA ISA Implementation Synthesizer ISA 
Implementation

So let’s begin with ISA exploration.



Core idea of ISA exploration: 
define the ISA from instructions 

found in real designs.
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Internally, ISA exploration has two stages: instruction enumeration, in which we enumerate all instruction seen in all hardware designs, and instruction filtering, in which 
which we pare down the list of instructions to our final ISA.
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A simple example: enumerate the 
instructions present in  

not (a and b)
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not (a and b)

not

and

a b



Naive approach: instructions are 
just the subexpressions!
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not (a and b)

a b

not

and

a b

and
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not (i0 and i1) i0 and i1 

i0 i1

not

and
i0 i1

and

Then the subexpressions would be,

First, the expression itself, not (i0 and i1), where a and b are replaced with generic placeholders i0 and i1,

And second, and of i0 and i1.



But we missed one!

143

But this naive approach misses an instruction!
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not (i0 and i1) i0 and i1 

i0 i1

not

and
i0 i1

and
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not i0

not

i0

not (i0 and i1) i0 and i1 

i0 i1

not

and
i0 i1

and

Specifically, the not instruction.



So how do we capture all instructions?
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So this naive approach doesn’t work. So how do we capture all instructions?


Unsurprisingly, I’m going to do it with rewrites, and use egg!



So how do we capture all instructions?
With rewrites! 

146



147

not

and

a b

To convert a node into an instruction,  
decide which of its children to convert to arguments.

First I’ll describe what the rewrites do at a high level, and then we’ll look at the rewrites running in an egraph.


In general, the rewrites say that, to convert a node into an instruction, we have to decide which of its children we will convert to placeholder arguments like i0 and i1, and 
which children we will keep as their full expressions.
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not

and

a b

To convert a node into an instruction,  
decide which of its children to convert to arguments.

So if we look at the and expression,
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not

and

a b

To convert a node into an instruction,  
decide which of its children to convert to arguments.

and

i0 i1

The only option we have is to convert its children to placeholders.
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not

and

a b

and

i0 i1

To convert a node into an instruction,  
decide which of its children to convert to arguments.

But when we look at the not expression, now we have a choice!
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not

and

a b

not

and and

i0 i1

To convert a node into an instruction,  
decide which of its children to convert to arguments.

i0 i1

We can either choose to keep the and expression, which produce this instruction,  or
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not

and

a b

not

and

not

and

i0 i1

To convert a node into an instruction,  
decide which of its children to convert to arguments.

i0 i1

i0

We can replace the and with a placeholder.
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(binop ?op ?bw (apply (instr ?ast0 ?canonical-args0) ?args0) (apply (instr ?ast1 ?canonical-args1) ?args1)) 
 => (apply (instr (binop-ast ?op ?bw ?ast0 ?ast1) (canonicalize (concat ?args0 ?args1)))  
           (concat ?args0 ?args1)) 

(binop ?op ?bw ?left (apply (instr ?ast1 ?canonical-args1) ?args1))  
 => (apply (instr (binop-ast ?op ?bw (hole ?bw) ?ast1) (canonicalize (concat (list ?left) ?args1)))  
           (concat (list ?left) ?args1)) 

(binop ?op ?bw (apply (instr ?ast0 ?canonical-args0) ?args0) ?right)  
 => (apply (instr (binop-ast ?op ?bw ?ast0 (hole ?bw)) (canonicalize (concat ?args0 (list ?right))))  
           (concat ?args0 (list ?right)))  

(binop ?op ?bw ?a ?b)  
 => (apply (instr (binop-ast ?op ?bw (hole ?bw) (hole ?bw)) (canonicalize (list ?a ?b)))  
           (list ?a ?b))

This can be encoded as a small set of rewrites in egg!
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not

and

a b

Running the rewrites over an egraph looks something like this.
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not

and

a b

apply

(i0 and i1) [a, b]

First, we’ll rewrite the and expression into the application of the i0 and i1 instruction on arguments a and b.
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not

and

a b

apply

(i0 and i1) [a, b]

apply

(not i0)
[(a and b)]

Then we’ll rewrite the not expression similarly, to the application of the not i0 instruction onto a and b.

Finally, when we see that we have two instructions in sequence, that is a not instruction being applied to the result of an and instruction,
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not

and

a b

apply

(i0 and i1) [a, b]

apply

(not i0)
[(a and b)]

apply

(not (i0 and i1))
[a, b]

We have a rewrite that fuses them into a single fused instruction, not i0 and i1.
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not

and

a b

apply

(i0 and i1) [a, b]

apply

(not i0)
[(a and b)]

apply

(not (i0 and i1))
[a, b]

From here, it’s easy to pull out the enumerated instructions from the egraph.



We can even apply other rewrites 
simultaneously!
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not (a and b) ==> (not a) or (not b) 

De Morgan’s law

So for example, if we apply one of Demorgan’s laws…
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not

and

a b

…

…

…onto our egraph…
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not

and

a b

…

… or

not not

…we get a completely new expression. If we are running the enumeration rewrites simultaneously, the rewrites will enumerate the instructions in this new expression.
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not

and

a b

…

… or

not not

apply

(i0 or i1)

[(not a), (not b)]
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i0 or i1

i0 and i1

not i0
not (i0 and i1)Our potential 

instructions!

We can pull all of the instructions we found out of the egraph—this becomes our list of potential instructions for the ISA.
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Next, we filter the instructions to produce our final ISA.
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i0 or i1

i0 and i1

not i0
not (i0 and i1)

In this step, we filter down the potentially long list of instructions based on user preference.
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i0 or i1

i0 and i1

not i0
not (i0 and i1) Too specialized—filter it out!

For example, we might filter out this instruction as being too specialized.

In this toy example, we’re likely not going to want to filter out any of these instructions, but as our list of instructions gets long, filtering will be important to keep the size 
of the isa reasonable.
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At the core of the ISA implementation synthesizer is a tool called Rosette.
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Rosette is a synthesis tool which allows us to ask:

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas, 
new paradigms, and reflections on programming & software, pp. 135-152. 2013.
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For all inputs a and b,
find an implementation of low-level-FPGA-impl such that
   low-level-FPGA-impl(a, b) == high-level-instr-impl(a, b)

Rosette is a synthesis tool which allows us to ask:

To do so, we need to define the high-level semantics of the instruction,
and the low-level semantics of the FPGA.

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas, 
new paradigms, and reflections on programming & software, pp. 135-152. 2013.
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i0 or i1

i0 and i1

not i0
not (i0 and i1)
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(bvor i0 i1)

(bvand i0 i1)

(bvnot i0)
(bvnot (bvand i0 i1))

i0 or i1

i0 and i1

not i0
not (i0 and i1)
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To capture architecture-level semantics of 
FPGAs, we simply build an interpreter for 

each FPGA component!
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(define (lut memory inputs) 
  (let* ([inputs (zero-extend inputs (bitvector (length (bitvector->bits memory))))]) 
    (extract 0 0 (bvlshr memory inputs)))) 
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(define (lut memory inputs) 
  (let* ([inputs (zero-extend inputs (bitvector (length (bitvector->bits memory))))]) 
    (extract 0 0 (bvlshr memory inputs)))) 

(define (ultrascale-plus—lut6-2 memory inputs) 
  (let* ([lut5-0 (lut (extract 63 32 memory) (extract 4 0 inputs))] 
         [lut5-1 (lut (extract 31 0 memory) (extract 4 0 inputs))] 
         [O6 (if (bitvector->bool (bit 5 inputs)) lut5-0 lut5-1)] 
         [O5 lut5-1]) 
    (list O5 O6)))
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i0 or i1

i0 and i1

not i0
not (i0 and i1)
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For all inputs a and b,

find an implementation of low-level-and-impl such that

   low-level-and-impl(a,b) == high-level-and-impl(a,b)
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For all inputs a and b,

find an implementation of low-level-and-impl such that

   low-level-and-impl(a,b) == (bvand a b)
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For all inputs a and b,

find a setting of memory such that

   (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)
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For all inputs a and b,

find a setting of memory such that

   (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)

So we plug that into rosette, and rosette gives us an answer!
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For all inputs a and b,

find a setting of memory such that

   (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)
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memory: 
 (bv #x0000000000000008 64)

For all inputs a and b,

find a setting of memory such that

   (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)
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memory: 
 (bv #x0000000000000008 64)

For all inputs a and b,

find a setting of memory such that

   (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)
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memory: 
 (bv #x0000000000000008 64)

module and(a, b, out); 
  LUT2 #( 
    .INIT(4'h8) 
  ) _0_ (.I0(a), .I1(b), .O(out)); 
endmodule 

For all inputs a and b,

find a setting of memory such that

   (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)
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memory: 
 (bv #x0000000000000008 64)

module and(a, b, out); 
  LUT2 #( 
    .INIT(4'h8) 
  ) _0_ (.I0(a), .I1(b), .O(out)); 
endmodule 

For all inputs a and b,

find a setting of memory such that

   (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)
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To support new FPGA architectures…
…just provide an interpreter!

187



188

hardware 
designs 

ISA Exploration

ISA Implementation Synthesis

Instruction 
Enumerator ISA

ISA Rosette ISA 
Implementation

Instruction 
Filter

Potential 
Instructions

High-Level 
Instruction 
Semantics

Low-Level 
Hardware 
Semantics



189

hardware 
designs 

ISA Exploration

ISA Implementation Synthesis

Instruction 
Enumerator ISA

ISA Rosette 

Instruction 
Filter

Potential 
Instructions

High-Level 
Instruction 
Semantics

Xilinx 
UltraScale+ 
interpreter

UltraScale+ ISA 
Implementation

So we demonstrated synthesizing for Xilinx ultrascale+, but if I wanted to synthesize

(Build)

For lattice ECP5, which is another FPGA, I would just need to provide an interpreter for ECP5’s lookup tables.
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Finally, to compile a new design, we just need to:

1. Insert it into the egraph

2. Enumerate its instructions via rewrites

3. Extract an implementation composed of instructions in our ISA

4. Output Verilog

If the design isn’t covered with the current ISA, we can:

• Run rewrites to find alternative implementations of the design

• Find a minimal set of new instructions to add to the ISA

191
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So that is lakeroad: a tool that automatically defines and implements ISAs for FPGAs.
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Automatically generating compiler backends 
from explicit, formal hardware models  

• gives rise to emergent optimizations, 
• reduces development time, and 
• enables verification. 
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Complex optimizations emerge 
from small logic rewrites

It’s automatic!

ISA implementations found by 
Rosette are correct by construction
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Proposed Evaluation
Paper 1: ISA Implementation Synthesis

• Goal: Evaluate the quality of synthesized implementations; demonstrate ability 
to support new FPGAs.

• We will synthesize three ISAs (Reticle, Calyx, MLIR Comb) for three FPGAs 
(UltraScale+, ECP5, SOFA)

Paper 2: ISA Exploration and Lakeroad End-to-End

• Goal: Demonstrate ability to enumerate a large space of interesting 
instructions; demonstrate fast compilation using the egraph.

• We will run Lakeroad end-to-end on a large corpus of hardware benchmarks 
(from sources like MachSuite)
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In Closing
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Automatically generating compiler backends 
from explicit, formal hardware models  

• gives rise to emergent optimizations, 
• reduces development time, and 
• enables verification. 
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So far, I have provided evidence for this thesis 
through Glenside and its application in 3LA.
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So far, I have provided evidence for this thesis 
through Glenside and its application in 3LA.
I plan to demonstrate this thesis once more 

through Lakeroad.
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Now that we’ve defined our core abstraction, access patterns, we will demonstrate how access patterns and the Glenside IR enable rich term rewriting over tensor 
programs.

We begin by first showing how Glenside cleanly represents two core deep learning kernels: matrix multiplication and 2D convolution.

We then return to our original task, and show how Glenside can be used to implement hardware mapping via program rewriting.

Finally, using equality saturation, a modern program rewriting framework, we demonstrate how Glenside can discover ways to flexibly map other kernels onto hardware 
that was designed for a specific purpose: in this case, mapping 2D convolution to matrix multiplication hardware.



Outline

• Motivating Example: Matrix Multiplication


• Access Pattern Definition


• Case Studies


• Reimplementing Matrix Multiplication with Access Patterns


• Implementing 2D Convolution with Access Patterns


• Hardware Mapping as Program Rewriting


• Flexible Hardware Mapping with Equality Saturation

209

Let’s begin by reimplementing matrix multiplication with access patterns and the Glenside IR.



Given matrices A and B, pair each row of A with 
each column of B, compute their dot products, 

and arrange the results back into a matrix.

210

Remember, we defined our matrix multiplication algorithm as,



 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((3), (4))

211

We will now implement matrix multiplication with Glenside.

In these slides, the Glenside expression will appear on the left, and the access pattern shape of the Glenside expression on that line will appear as a lisp-style comment 
on the right.

To begin implementing matrix multiplication, we first need to access A as a list of its rows, and access B as a list of its columns.

Accessing A as a list of its rows is straightforward. Given a tensor and a dimension index, the access operator converts a tensor into an access pattern by splitting the 
tensor’s shape at the given dimension index. In this case, A is a three-comma-four shaped tensor, so accessing it at dimension 1 produces this access pattern shape. 
This access pattern views A as a three-length vector of four-length vectors—in other words, a list of the rows of A. 



 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((3), (4))
Access A as a list of its rows
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 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))

;   ((3), (4))

212

Next, we must access B as a list of its columns.

Accessing B at dimension 1, however, gives a list of B’s rows.



 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))
;   ((2), (4))

;   ((3), (4))

213

Thus, we employ transpose, which we call an access pattern transformer in Glenside.

Given an access pattern and a list of integers, transpose reorders the dimensions of the access pattern.

In this case, we simply swap the dimensions of the access pattern, giving us a 2-length vector of 4-length vectors, or a list of B’s columns. 



 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))
;   ((2), (4))

;   ((3), (4))
Access B as a list 
of its rows, then 
transpose into a 

list of its columns
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 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))
;   ((2), (4))
;   ((3), (4))
;   ((3, 2), (2, 4))

214

Now that we have a list of A’s rows and a list of B’s columns, we use Glenside’s cartesian product transformer to create every row-column pair. Notice that the resulting 
access pattern is a three-comma-two shaped matrix, each element of which is a two-comma-four shaped matrix. The three-comma-two shape preserves the shape 
information from A and B, and will give us the final shape of the output matrix. The two-comma-four shape represents a pair of 4-length vectors—one row of A paired 
with one column of B.



 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))
;   ((2), (4))
;   ((3), (4))
;   ((3, 2), (2, 4))

Create every row–column pair 
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 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))
;   ((2), (4))
;   ((3), (4))
;   ((3, 2), (2, 4))
;   ((3, 2), ())

215

Finally, we compute the dot product of each row-column pair. Glenside’s compute expression maps a given operator over the compute dimensions of the access pattern, 
i.e. the second shape tuple, completely ignoring the access dimensions, i.e. the first shape tuple.

In this case, the dot product operator reduces each pair of 4-length vectors to a scalar.


And that is our full representation of matrix multiplication in Glenside! As you can see, our representation here is pure, low-level, and conveniently avoids relying on 
binding.



 (cartProd                
  (access A 1)  
  (transpose              
   (access B 1)     
   (list 1 0))))

;   ((4), (2))
;   ((2), (4))
;   ((3), (4))
;   ((3, 2), (2, 4))
;   ((3, 2), ())

Compute dot product of every row–column pair 

215
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Next, we will demonstrate the expressiveness of access patterns by implementing an entirely different kernel—2D convolution—with Glenside.



[

[

Inputs: a batch of image/activation tensors 
and a list of weight/filter tensors

[

[
217

Let’s first get a brief refresher on how 2D convolution works.

The inputs to 2D convolution are a batch of image or activation tensors, and a list of weight or filter tensors.



218

In this example, we will show what happens with just one set of activations and one filter, as the same process is repeated for every set of activations and every filter.



Filter and region of image are 
elementwise multiplied and the 

results are summed

219

The filter is applied onto a window of the activations by computing an element wise multiplication and sum between the filter and the window of activations.



Filter and region of image are 
elementwise multiplied and the 

results are summed

219



220

This element wise multiplication and sum is computed over every possible window of the activations.



221



222



[
[

One output channel for each input filter

223

This same process is completed for each filter in the set, producing one output channel for each filter.



    (windows                  

     (access activations 1)   

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))      

  1) 

 (list 0 3 1 2))

;   ((O), (C, Kh, Kw))

S

Access weights as a list of 3D filters

224

To implement 2D convolution in Glenside, we begin by accessing the weights as a list of 3 dimensional filters. In this case, there are O filters, where O will be our number 
of output dimensions, and each filter is of shape C, Kh, Kw, where C represents our number of input channels and Kh and Kw are our filter height and width.



    (windows                  

     (access activations 1)   

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))      

  1) 

 (list 0 3 1 2))

;   ((O), (C, Kh, Kw))

S

Access activations as a batch of 3D images

;   ((N), (C, H, W))

225

Next we access our activations as a batch of N 3 dimensional images, where N is our batch size, and H and W are the input height and width.



    (windows                  

     (access activations 1)   

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))      

  1) 

 (list 0 3 1 2))

;   ((O), (C, Kh, Kw))

S

Form windows over input images

;   ((N), (C, H, W))

226

Now we must form windows over our activations. As this is a common pattern, also appearing for example in max and average pooling, Glenside provides the windows 
transformer for this purpose.



    (windows                  

     (access activations 1)   

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))      

  1) 

 (list 0 3 1 2))

;   ((O), (C, Kh, Kw))

S

These parameters control 
window shape and strides

;   ((N), (C, H, W))

227

The windows transformer takes an access pattern, a window shape, and a list of strides.



    (windows                  

     (access activations 1)   

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))      

  1) 

 (list 0 3 1 2))

;   ((O), (C, Kh, Kw))

S
At each location in each new image, 
there is a (C, Kh, Kw)-shaped window

;   ((N), (C, H, W))

;   ((N, 1, H’, W’), (C, Kh, Kw))

228

The result of the windows transformer is a new batch of images of shape H’,W’, where at each location in each new image, there is a C, Kh, Kw shaped window, 
representing each possible window of each image in the batch.




    (windows                  

     (access activations 1)   

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))      

  1) 

 (list 0 3 1 2))

;   ((O), (C, Kh, Kw))

S

Pair windows with filters

;   ((N), (C, H, W))

;   ((N, 1, H’, W’), (C, Kh, Kw))

;   ((N, 1, H’, W’, O), (2, C, Kh, Kw))

229

Next, we use the cartesian product transformer to pair every window of every image with every filter.



    (windows                  

     (access activations 1)   

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))      

  1) 

 (list 0 3 1 2))

;   ((O), (C, Kh, Kw))

SCompute dot product of each window–filter pair

;   ((N), (C, H, W))

;   ((N, 1, H’, W’), (C, Kh, Kw))

;   ((N, 1, H’, W’, O), (2, C, Kh, Kw))

;   ((N, 1, H’, W’, O), ())

230

Finally, we compute the dot product of each window-filter pair, which element wise multiplies each 3D window with each 3D filter and sums the results to a single scalar 
value.

This represents the core of the Glenside implementation of 2d convolution.



    (windows                  

     (access activations 1)   

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))      

  1) 

 (list 0 3 1 2))

;   ((O), (C, Kh, Kw))

Remove and rearrange dimensions

;   ((N), (C, H, W))

;   ((N, 1, H’, W’), (C, Kh, Kw))

;   ((N, 1, H’, W’, O), (2, C, Kh, Kw))

;   ((N, 1, H’, W’, O), ())

;   ((N, O, H’, W’), ())

231

Optionally, we can also remove and rearrange some dimensions so that the output layout matches the input layout.
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Now that we’ve shown that Glenside can represent common machine learning kernels, let’s understand how it can be used for term rewriting. We begin by addressing 
our original goal.



It reads an entire weight 
array of shape rows by cols. 

It then pushes n vectors of 
length rows through the array.

It computes the dot product 
of every vector with every 
column of the weights.

Finally, it writes out n 
vectors of length cols.

233

Recall our original idea: that hardware mapping is a program rewriting problem. 

Can we turn our hardware designer’s description of her accelerator into a searchable pattern?



233



Can we represent  hardware 
as a searchable pattern?

233



(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) With Glenside, we can!

234

With Glenside, we can!

In Glenside, we can express her hardware as the following pattern, which matches a dot product mapped over the cartesian product of two access patterns a0 and a1. 
Importantly, we can even express the fact that her hardware expects both access patterns to be vectors of vectors.



(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

(systolicArray ?rows ?cols ?a0 ?a1)
We can directly rewrite  to hardware invocations!
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We can then directly rewrite this pattern to hardware invocations, represented here as a new systolic array expression. We can even convey hardware parameters such as 
the number of systolic array rows and columns.



(compute dotProd          

 (cartProd                

  (access A 1)  

  (transpose              

   (access B 1)     

   (list 1 0))))

   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

(systolicArray ?rows ?cols ?a0 ?a1)

236

Now, we can use this rewrite to map our matrix multiplication implementation to her systolic array.



(compute dotProd          

 (cartProd                

  (access A 1)  

  (transpose              

   (access B 1)     

   (list 1 0))))

   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

(systolicArray ?rows ?cols ?a0 ?a1)

237



(systolicArray 

  4 2                

  (access A 1)  

  (transpose              

   (access B 1)     

   (list 1 0))))

   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

(systolicArray ?rows ?cols ?a0 ?a1)

238
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We have shown how we can use Glenside to formulate a program rewrite to perform hardware mapping. Yet mapping a matrix multiplication to matrix multiplication 
hardware is perhaps not all that impressive. To show the true power of program rewriting with Glenside, we will now demonstrate the flexible mapping of a 2D convolution 
to matrix multiplication hardware.



    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

(compute dotProd 

 (cartProd               

  (access A 1) 

  (transpose             

   (access B 1)    

   (list 1 0))))

240

Looking at the Glenside implementations of 2d convolution—on the left—and matrix multiplication—on the right—we can see a remarkably similar structure.



    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

(compute dotProd 

 (cartProd               

  (access A 1) 

  (transpose             

   (access B 1)    

   (list 1 0))))

A 3-length vector of 4-
length vectors

Convolution and matrix 
multiplication have 

similar structure!

241

Specifically, their core computation is the same: we take the cartesian product of two access patterns, and compute a dot product over the result. The primary difference 
is in how we form the input access patterns.




    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

Can we apply our hardware rewrite?

242

Knowing that 2D convolution is so similar to matrix multiplication, it begs the question: can we apply our systolic array rewrite?



    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) ; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))
Our access pattern shapes do not 

pass the rewrite’s conditions

243

As it stands, the answer is no. The systolic array rewrite expects access patterns which are vectors of vectors, while the access patterns present in 2D convolution are 
much more complicated.



    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) ; ((?n), (?rows))

; ((?cols), (?rows))

Can we flatten our access patterns?

244

However, if we could somehow flatten the access patterns to be vectors of vectors, we could apply our rewrite. So the question is, can we flatten our access patterns?



?a → (reshape (flatten ?a) ?shape)

Flattens and immediately reshapes an access pattern

245

The answer is yes, and it begins with a very simple rewrite. This rewrite matches any access pattern, flattening and immediately reshaping the access pattern back to its 
original shape.

On its surface, it may seem impractical that this rewrite is applied to every possible access pattern. However, using the equality saturation program rewriting framework 
provided by the egg library, we can efficiently apply this rewrite in all possible locations and store all resulting programs. 




?a → (reshape (flatten ?a) ?shape)

Flattens and immediately reshapes an access pattern

245



    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

246

When we apply this rewrite, one of the resulting programs is the following.



    (reshape (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) ?shape0) 

    (reshape (flatten (access weights 1)) ?shape1)))    

  1) 

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

247

Notice the reshape and flatten transformers on the two access patterns.

However, our access pattern shapes haven’t changed, as even though the access patterns are flattened, they are then immediately reshaped back to their original 
shapes.



    (reshape (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) ?shape0) 

    (reshape (flatten (access weights 1)) ?shape1)))    

  1) 

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

But our access pattern shapes haven’t changed!
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    (reshape (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) ?shape0) 

    (reshape (flatten (access weights 1)) ?shape1)))    

  1) 

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

We need to “bubble” the reshapes to the top

248

To remedy this, we need to bubble the reshapes to the top.



(cartProd 
 (reshape ?a0 ?shape0) 
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd  
 (reshape ?a ?shape))   → (reshape (compute dotProd ?a) ?newShape)

These rewrites “bubble” reshape through cartProd and compute dotProd
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To do so, we can use these two rewrites, which express the composition commutativity of reshape with cartesian product and compute dot product. Note that these 
rewrites express general properties of Glenside, and are not specific to the task at hand.



    (reshape (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) ?shape0) 

    (reshape (flatten (access weights 1)) ?shape1)))    

  1) 

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))
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Once we apply these rewrites, our program looks like this.



    (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) 

    (flatten (access weights 1)))) ?shape)   

  1) 

 (list 0 3 1 2))

; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

reshapes have been moved out, and the access patterns are flattened!
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The reshapes have been moved out, and the access patterns are now flattened.



    (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) 

    (flatten (access weights 1)))) ?shape)   

  1) 

 (list 0 3 1 2))

; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

Our rewrite can now map 
convolution to matrix 

multiplication hardware!

252

We can now use our rewrite to map 2D convolution to our matrix multiplication hardware!



(cartProd 
 (reshape ?a0 ?shape0) 
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd  
 (reshape ?a ?shape))   → (reshape (compute dotProd ?a) ?newShape)

?a → (reshape (flatten ?a) ?shape)

These rewrites rediscover the im2col transformation!

253

This transformation is not new—this is what’s called the im2col transformation. With a set of three simple rewrites expressing general properties of Glenside, we are able 
to rediscover im2col!
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In conclusion,
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In conclusion,

we have presented access patterns as a new tensor representation,
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In conclusion,

we have presented access patterns as a new tensor representation,

we have used them to build the pure, low-level, binder free IR Glenside, 
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In conclusion,

we have presented access patterns as a new tensor representation,

we have used them to build the pure, low-level, binder free IR Glenside, 

and have shown how they enable hardware-level tensor program rewriting.
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https://github.com/gussmith23/glenside
Glenside is an actively maintained Rust library! 

Try it out and open issues if you have questions!
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Glenside is an actively maintained Rust library! Please try it out and feel free to open issues if you have questions or find bugs.

https://github.com/gussmith23/glenside
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Lastly, I’d like to thank everyone who worked on this project, my labs, and the funding agencies that made it possible.



Thank you!
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Thank you for listening, and I’m excited to take your questions!


