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Implicit hardware models in compiler
backends are potential sources of

iImperfect optimization,
difficulties in development,
and hard-to-find bugs!
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Automatically generating compiler backends
from explicit, formal hardware models

® QIVGS rlse to emergent OPtlmlzatl()nS, optimizer discovers optimizations that

are not explicitly programmed

e reduces development time, and
e enables verification.
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Automatically Generating Instruction Selectors
Using Declarative Machine Descriptions

Joao Dias

Tufts University
dias@cs.tufts.edu

Abstract

Despite years of work on retargetable compilers, creating a good,
reliable back end for an optimizing compiler still entails a lot of
hard work. Moreover, a critical component of the back end—the
instruction selector—must be written by a person who is expert in
both the compiler’s intermediate code and the target machine’s in-
struction set. By generating the instruction selector from declar-
ative machine descriptions we have (a) made it unnecessary for
one person to be both a compiler expert and a machine expert, and
(b) made creating an optimizing back end easier than ever before.

Our achievement rests on two new results. First, finding a mapping
from intermediate code to machine code is an undecidable problem.
Second, using heuristic search, we can find mappings for machines
of practical interest in at most a few minutes of CPU time.

Our most significant new idea is that heuristic search should be
controlled by algebraic laws. Laws are used not only to show when
a sequence of instructions implements part of an intermediate code,
but also to limit the search: we drop a sequence of instructions
not when it gets too long or when it computes too complicated a
result, but when too much reasoning will be required to show that
the result computed might be useful.

Categories and Subject Descriptors D.3.4 [Processors]: Code
generation; D.3.4 [Processors]: Retargetable compilers

General Terms Algorithms, Experimentation, Theory

Norman Ramsey

Tufts University
nr@cs.tufts.edu

technique, an instruction selector is generated automatically from
declarative machine descriptions. (A declarative machine descrip-
tion contains no code and no information about any compiler’s data
structures; instead, it simply and formally describes properties of a
target machine.)

Our contributions are as follows:

* We show that given a description of an arbitrary instruction set,
generating an instruction selector is undecidable (Section 8).
To find machine instructions that implement intermediate code,
it is therefore necessary to search heuristically.

* We present a new heuristic-search algorithm, which starts with
the expressions computed by the machine’s instruction set and
gradually adds to a pool of computable expressions until every
intermediate-code expression is computable.

A crucial invariant is that we consider only computations that
we know can be implemented entirely by machine instructions.
This invariant makes our algorithm significantly simpler than
earlier search algorithms, which start with goal computations
whose implementations by machine instructions are not known.

e To increase the pool of computable expressions, we rewrite
existing computable expressions using algebraic laws. To match
the left-hand side of an algebraic law, we have developed a new
algorithm called establishment, which uses a novel combination
of unification and machine code to make two expressions equal

(Qant;nn 7 AOMI\;OII‘I n;nnro A\

Machine Descriptions to Build Tools for
Embedded Systems

Norman Ramsey and Jack W. Davidson

Department of Computer Science
University of Virginia
Charlottesville, VA 22903
nr@cs.virginia.edu jwd@cs.virginia.edu

Abstract. Because of poor tools, developing embedded systems can be
unnecessarily hard. Machine descriptions based on register-transfer lists
(RTLs) have proven useful in building retargetable compilers, but not in
building other retargetable tools. Simulators, assemblers, linkers, debug-
gers, and profilers are built by hand if at all—previous machine descrip-
tions have lacked the detail and precision needed to generate them. This
paper presents detailed and precise machine-description techniques that
are based on a new formalization of RTLs. Unlike previous notations,
these RTLs have a detailed, unambiguous, and machine-independent se-
mantics, which makes them ideal for supporting automatic generation of
retargetable tools. The paper also gives examples of A-RTL, a notation
that makes it possible for human beings to read and write RTLs without
becoming overwhelmed by machine-dependent detail.

chine Descriptions for Machine-Level Tools

lopers for embedded systems often work without the benefit of the best
rare tools. Embedded systems can have unusual architectural features, and
processors can be introduced rapidly. Development is typically done on
¢ processors, and cross-development can make it hard to get basic compil-
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Norman Ramse

Unlike Ramsey, we will focus not on CPUs, but on fixed-
function accelerators and programmable hardware!
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Gus Smith, Andrew iu, Steven Lyubomirsky, Scott Davidson, Joeph McMahan,
Michael Taylor, Luis Ceze, and Zachary Tatlock.

"Pure tensor program rewriting via access patterns (representation pearl).” MAPS 2021.
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Glenside is a tensor IR* built for equality saturation.

Glenside enables users to model hardware
accelerators as program rewrites.

These rewrites, in concert with Glenside’s built-in
rewrites, automatically discover ways to map
machine learning workloads to accelerators.

* Intermediate representation
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Three design requirements for Glenside:
1. The language must be pure —a necessary requirement for equality saturation.
2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.
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Let’s begin with an example:
matrix multiplication!
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We want to represent matrix multiplication in a way that
1. 1S pure,
2. IS low-level, and

3. avoids binding.



Given matrices A and B, pair each row of A with
each column of B, compute their dot products,
and arrange the results back into a matrix.
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View matrices as lists of rows/columns
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Cartesian product
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map dotProd

Map dot product

operator over every
row-column pair
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But there’s a problem!



The values are

correct, but the
shape is missing!
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Cartesian product destroys our
shape information!



We introduce a new
Cartesian product
operator

]
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[ dotProd [(E, ), (E, )])

dotprod [ ( E, ), ( E, )],

dotprod [ (m,ym ), ( : )] ]



map2D dotProd




v

[ | dotProd (E, ),dOtPrOd ( E ’ )],

_ B
- (=, )

[ dotProd ( o) )’ dotProd N, ],
_ B

[ dotProd ( : ), dotProd ( ’ )] ]

2D map operator

maps over correct
dimension
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Shape information

IS preserved!
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x>p @and map2D hard-code which dimensions are iterated over and
which dimensions are computed on...

...but If tensor shapes change, we’ll need entirely new operators!

Can we encode this in the tensor itself?

(Yes! This is what Glenside’s access patterns do!)
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An access pattern looks like...
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. . . . A 3-length vector of
4-length vectors
-
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4-length vectors
-

compute dimensions
(computed on)

52



An access pattern looks like...

 —
-
" N RN} ™ (terated over)
- x
[, 0, ) ESEEeR ¢ )

[ ] compute dimensions
‘ ‘ ‘ (computed on)

)
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An access pattern looks like...

access dimensions
(iterated over)

A scalar-shaped L
tensor of a single (( ), (354))

(3,4)-shaped tensor T

compute dimensions
(computed on)

o4
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Same tensor, three possible views!



Transformer Input(s) Output Shape

access ((aog,...), (...,a,)) and non-negative integer i ((ag,...,ai—1), (a;,...,ay))

cartProd ((ag,-..,an), (co,-.-,Cp)) ((ag,...,an,bo,....bm), (2,¢co,...,¢p))
and ((bo,...,bm), (co, e cp))

windows ((ag,...,am), (bo,...,bn)), ((ao,...,am,b(’),...,b,’z), (wo, ..., Wn)),
windg '

slice ((ay, We redefine common tensor and list operators with access pattern
dimer semantics, which gives us the Glenside IR!

squeeze ((ay, -
dimension index d; we assume ay = 1 with a; removed

flatten ((ao,...,am), (bo,...,bn)) ((GO"'am)» (b()bn))

reshape ((ag,...,am), (bo,...,by)), ((cos---s¢p), (dos - .., dg)),
access pattern shape literal ((co,...,cp), (do,...,dg)) ifag---am=co---cpandby---b, =dy---d,

Table 1. Glenside's access pattern transformers.
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(transpose - ((N,O,H'W", () (compute dotProd ,  ((M,0), ()
(squeeze - ((N,H', W’,0), () (cartProd , ((M,0), (2,N))
(compute dotProd - ((N,LLH',W',0), ) (access activations 1) ; ((M), (N))

(cartProd . ((N,1,H",W’,0), (2,C,K;,K,,)) (transpose ,  ((0), (N))
(windows ., ((N,1LH,W'), (C,Kj,Ky)) (access weights 1) ,  ((N), (0))
(access activations 1) : ((N), (C,H/W)) (list 1 9))))
(Shape € Kn Rw) (b) Matrix multiplication.
(shape 1 Sh Sw)) N
(access weights 1))) . ((0), (C.KpKy)) (compute reduceMax - ((N,C,H’',W"), (,)) ‘
1 (windows . ((N,C,H",W’), (Kp,Kw))
(list @ 3 1 2)) (access activations 2) ; ((N,C), (H,W))
(shape Kh Kw)
(shape Sh Sw)))
(a) 2D convolution. (c) Max pooling.

Figure 2. Common tensor kernels from machine learning expressed in Glenside. Lines containing access patterns are annotated
with their access pattern shape. N is batch size; H/W are spatial dimension sizes; C/O are input/output channel count; K;/K,,
are filter height/width; S;/S,, are strides.

Glenside can represent common kernels in machine learning.

Smith, Gus Henry, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan, Michael Taylor, Luis Ceze, and Zachary Tatlock.
"Pure tensor program rewriting via access patterns (representation pearl)." MAPS 2021.
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But how is Glenside useful?



But how is Glenside useful?
More importantly, how does it demonstrate my thesis?



Glenside in the 3LA project
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How I'll finish

Introduction
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Glenside
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ALLEN
SCHOOL

Bo-Yuan Huang, Steven Lyubomirsky, Yi Li, Mike He, Thierry Tambe, Gus Smith, Akash Gaonkar, Vishal Canumalla,
Gu-Yeon Wei, Aarti Gupta, Zachary Tatlock, Sharad Malik

"Specialized Accelerators and Compiler Flows: Replacing Accelerator APIs with a Formal Software/Hardware Interface." arXiv 2022. °©
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Simulating, verifying, and compiling workloads on custom
accelerators iIs hard.
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Simulating, verifying, and compiling workloads on custom
accelerators iIs hard.

3LA is a toolkit which makes it easier, by compiling
workloads to the ILA simulation and verification
framework.

Glenside is a key component of 3LA, where it is used to
discover mappings of workloads to accelerators.



ILAAS]

Huang, B. Y., Zhang, H., Subramanyan, P, Vizel, Y., Gupta, A., & Malik, S. (2019). Instruction-level abstraction (ILA): A uniform specification
for system-on-chip (SOQ) verification. ACM Transactions on Design Automation of Electronic Systems, 24(1), [10]. https://doi.org/
10.1145/3282444
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Allows hardware developers to specify

ISA-like interface for their design

ILAAS]

Huang, B. Y., Zhang, H., Subramanyan, P, Vizel, Y., Gupta, A., & Malik, S. (2019). Instruction-level abstraction (ILA): A uniform specification
for system-on-chip (SOCQC) verification. ACM Transactions on Design Automation of Electronic Systems, 24(1), [10]. https://doi.org/
10.1145/3282444
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Allows hardware developers to specify
ISA-like interface for their design

Portable, compiler-friendly, and provides verification and simulators out of the box!

Huang, B. Y., Zhang, H., Subramanyan, P, Vizel, Y., Gupta, A., & Malik, S. (2019). Instruction-level abstraction (ILA): A uniform specification
for system-on-chip (SOCQC) verification. ACM Transactions on Design Automation of Electronic Systems, 24(1), [10]. https://doi.org/
10.1145/3282444
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Models — 7?7?77 —— |LA instructions

Not an easy problem!

(Spoiler: we use Glenside!)
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Can we use TVM'’s Bring Your Own Codegen?

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang.
"Bring Your Own Codegen to Deep Learning Compiler." arXiv 2021.
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bias_add(dense(*x, %), %))

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang.
"Bring Your Own Codegen to Deep Learning Compiler." arXiv 2021.
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Can we use TVM'’s Bring Your Own Codegen?

bias_add(dense(*x, %), %))

Matches a linear layer: a dense followed by a bias addition.

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang.
"Bring Your Own Codegen to Deep Learning Compiler." arXiv 2021.
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FfficientNet MobileNet V2 ResMLP ResNet-20 Transformer

VTA O l 38 2 66
FlexASR O O O 2 O

Moreau, Thierry, et al. "VTA: an open hardware-software stack for deep learning." arXiv preprint arXiv:1807.04188 (2018).

T. Tambe et al., "9.8 A 25mm2 SoC for loT Devices with 18ms Noise-Robust Speech-to-Text Latency via Bayesian Speech Denoising and Attention-Based Sequence-to-Sequence DNN
Speech Recognition in 16nm FIinFET," 2021 IEEE International Solid- State Circuits Conference (ISSCC), 2021, pp. 158-160, doi: 10.1109/ISSCC42613.2021.9366062. 66



%242 = dense (%240, %241, units=10);
add (%242, %linear_bias)
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%242 = dense (%240, %241, units=10);
add (%242, %linear_bias)

Won’t match—this should be a bi1as add!
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%242 = dense (%240, %241,
add (%242, %linear_bias)

Won’t match—this should be a bi1as add!

If only these rewrites were more flexible...

units=10) ;

67/



|_et’s use Glenside and equality
saturation!




(equality saturation via egg)

S

Models — Glenside — |[LA instructions

Flexible matching: using small exploratory rewrites,

we expose many more possible mappings!

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
"egqg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

Gus Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan, Michael Taylor, Luis Ceze, and Zachary Tatlock.
"Pure tensor program rewriting via access patterns (representation pearl).” MAPS 2021.
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What is equality saturation?



Basic idea:

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization."
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.

/1



Basic idea:

iInstead of destructively rewriting a program
with a predetermined list of program rewrites,

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization."
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.
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Basic idea:

iInstead of destructively rewriting a program
with a predetermined list of program rewrites,

run all rewrites simultaneously and repeatedly,

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization."
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.



Basic idea:

iInstead of destructively rewriting a program
with a predetermined list of program rewrites,

run all rewrites simultaneously and repeatedly,

and Keep all of the discovered versions of the
program!

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization."
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.



Enabled by the equality graph, or egraph, data structure!

Basic idea:

iInstead of destructively rewriting a program
with a predetermined list of program rewrites,

run all rewrites simultaneously and repeatedly,

and Keep all of the discovered versions of the
program!

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization."
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.



Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
"egqg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).
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Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
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X * 1 ==>1
X [/ x ==>1

X * 2 ==> X <K<K 1
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X * 1 ==>1
X / x ==>1
X * 2 ==> x << 1
(x * y)/z ==> x * (y/z)
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>

X * (y/z)
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X * 1 ==>1
X [/ x ==>1 Ca 1
X * 2 ==> x << 1

(X x y)/z ==>x *x (y/z)

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
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X * 1 ==> 1
X [/ x ==>1
X * 2 ==> x << 1
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But what if rewrites ran in a
different order?




X [/ x ==>1
X * 2 ==> x << 1
(x xy)/z ==>x *x (y/z)

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
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(a << 1)/2

X * 2 ==> x << 1
(X *y)/z ==> x * (y/z)
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(a << 1)/2

X * 2 ==> x << 1
(X *y)/z ==> x * (y/z)
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Ordering matters because
rewrites are destructive.




Ordering matters because
rewrites are destructive.

This is called the phase ordering problem!



S0 why not keep around all
discovered versions of the program?




S0 why not keep around all
discovered versions of the program?

This is what egraphs do!




X [/ x ==>1
X * 2 ==> x << 1
(x xy)/z ==>x *x (y/z)

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
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X * 2 ==> x << 1
(X *y)/z ==> x * (y/z)
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X [/ x ==>1
X * 2 ==> x << 1
(x xy)/z ==>x *x (y/z)

We can fire the rewrites in any order—
all discovered programs will be kept!

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.

"egqg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021). >



https.//egraphs-good.qgithub.io/

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
"egqg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).
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https://egraphs-good.github.io/

(equality saturation via egg)

(©)

Models — Glenside — |[LA instructions

Flexible matching: using small exploratory rewrites,

we expose many more possible mappings!
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We capture accelerator semantics as program rewrites...

(compute dot-product (access-cartesian-product ?x ?w))
=> (accelerator-call vta-dense ?x ?w)

(compute reduce-max (access-windows ?a (shape 2) (shape 2)))
=> (accelerator-call flex—-maxpool ...)

(bias-add (dense ?x ?w) ?bias ?7axis)
=> (accelerator-call flex-linear ?x ?w ?bias)
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We capture accelerator semantics as program rewrites...

(compute dot-product (access-cartesian-product ?x ?w))
=> (accelerator-call vta-dense ?x ?w)

(compute reduce-max (access-windows ?a (shape 2) (shape 2)))
=> (accelerator-call flex—-maxpool ...)

(bias-add (dense ?x ?w) ?bias ?7axis)
=> (accelerator-call flex-linear ?x ?w ?bias)

...and our exploratory rewrites are general-purpose rewrites over Glenside!

?x => (relay-operator-call bias—-add 7x
(relay-operator-call zeros (shape ...)) 1)
?7a => (reshape (flatten ?a) ?shape)
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VTA

FlexASR

EfficientNet
0 — 35
0 — 35

MobileNet V2
1 — 41

0— 41

ResMLP

38
0— 38

ResNet-20
2 — 22
2 — 22

Transformer

66
0 — 66
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?7a > (reshape (flatten ?7a) ?shape)

(cartProd (reshape ?7a0 ?shape0®) (reshape ?7al ?shapel))
> (reshape (cartProd ?7a0 ?al) ?newShape)

(compute dotProd (reshape ?a ?shape))
> (reshape (compute dotProd ?a) ?newShape)

These rewrites rediscover the im2col

transformation, without explicitly encoding it!
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What does 1t show about
Glenside?




Automatically generating compiler backends
from explicit, formal hardware models

e gives rise to emergent optimizations,
e reduces development time, and
e enables verification.



Automatically generating compiler backends
from explicit, formal hardware models

e gives rise to emergent optimizations,
e reduces development time, and
e enables verification.



Automatically generating compiler backends
from explicit, formal hardware models

e gives rise to emergent optimizations,
® reduces development time, and Writing rewrites is simpler than

writing a mapper from scratch!

e enables verification.
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Automatically generating compiler backends
from explicit, formal hardware models

e gives rise to emergent optimizations,
® reduces development time, and Writing rewrites is simpler than

writing a mapper from scratch!

e enables verification.

Via mapping to ILA!
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What I’'ll show

How I’ve shown It so far

How I'll finish

Introduction

Thesis

Glenside

Glenside in the 3LA Project

Lakeroad Introduction

Lakeroad pt. 1

Lakeroad pt. 2
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Accelerator calls are -

predetermined; we’re
just searching for them!
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Accelerator calls are -

predetermined; we’re
just searching for them!
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Accelerator calls are : . But we have all of these other
predetermined; we’re interesting equivalencies we’ve

just searching for them! discovered...

What if we could use the
information in the egraph to tell
us which hardware to make?
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Accelerator calls are : . But we have all of these other
predetermined; we’re interesting equivalencies we’ve

just searching for them! discovered...

What if we could use the
information in the egraph to tell
us which hardware to make?
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Lakeroad uses similar techniques to
Glenside (i.e. equality saturation) to map

computation to custom hardware—in this
case, FPGAs.




Lakeroad uses similar techniques to
Glenside (i.e. equality saturation) to map

computation to custom hardware—in this
case, FPGAs.

However, Lakeroad additionally uses what
It discovers to propose entirely new
hardware primitives!




What are FPGASs?



Field Programmable Gate Array



l.e. easily reprogrammable!

—_—
Field Programmable Gate Array



l.e. easily reprogrammable!

W L ——
Field Programmable Gate Array
Iﬁ_l

filled with logic gates
(and nowadays, much more!)
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Current FPGA compilers are slow
and unpredictable.




“UltraScale+ devices employ DSP blocks that are rated
at 891 MHz for the fastest speed grade. Nonetheless,
large designs implemented on FPGAs typically achieve
system frequencies lower than 400MHz.”

Lavin, Chris, and Alireza Kaviani. "RapidWright: Enabling custom crafted implementations for FPGAs." 2018 IEEE
26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2018.
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behavioral Verilog

level of abstraction
FPGA-level Verilog

)

gate-level representation
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Recent works (Reticle!) have attempted a
more direct, software-compiler-like approach.



behavioral Verilog
level of abstraction

Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. "Reticle: a virtual machine for programming modern FPGAs." PLDI 2021.
Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam lzraelevitz, Jack Koenig, Chris Lattner, Andrew Lenharth et al.
"MLIR as Hardware Compiler Infrastructure." WOSET 2021.

Callahan, Timothy J., Philip Chong, Andre DeHon, and John Wawrzynek. “Fast module mapping and placement for datapaths in FPGAs." FPGA 1998.
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behavioral Verilog
level of abstraction

FPGA-level Verilog

Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. "Reticle: a virtual machine for programming modern FPGAs." PLDI 2021.
Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam lzraelevitz, Jack Koenig, Chris Lattner, Andrew Lenharth et al.
"MLIR as Hardware Compiler Infrastructure." WOSET 2021.

Callahan, Timothy J., Philip Chong, Andre DeHon, and John Wawrzynek. “Fast module mapping and placement for datapaths in FPGAs." FPGA 1998.
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behavioral Verilog

level of abstraction l
intermediate representation (IR)

:
|

FPGA-level Verilog

Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. "Reticle: a virtual machine for programming modern FPGAs." PLDI 2021.
Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam lzraelevitz, Jack Koenig, Chris Lattner, Andrew Lenharth et al.
"MLIR as Hardware Compiler Infrastructure." WOSET 2021.

Callahan, Timothy J., Philip Chong, Andre DeHon, and John Wawrzynek. “Fast module mapping and placement for datapaths in FPGAs." FPGA 1998.
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To implement this, we need an FPGA
“ISA”: the lowest-level IR which gets
converted to FPGA-ready Verilog.



behavioral Verilog
level of abstraction l

l
FPGA ISA

l

FPGA-level Verilog
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New FPGA compiler toolchains
specify their ISAs explicitly!




'comb' Dialect

Types and operations for comb dialect This dialect defines the comb dialect, which is intended to be a generic representation of combinational logic outside of a

particular use-case.

e Operation definition

O

O

O

O

comb.add (:circt::comb::AddOp)

comb.and (::circt::comb::AndOp).

comb.concat (::circt::comb::ConcatOp)

comb.divs (::circt::comb::DivSOp)

comb.divu (::circt::comb::DivUOR)

comb.extract (::circt::comb::ExtractOp).

comb.icmp (::circt::comb::ICmpOpR)

comb.mods (::circt::comb::ModSOp).

comb.modu (::circt::comb::ModUOp)

comb.mul (::circt::comb::MulOp).

comb.mux (:circt::comb::MuxOp).

comb.or (::circt::comb::0rOp).

comb.parity (::circt::comb::ParityOp)

comb.replicate (::circt::comb::ReplicateOp)

comb.shl (::circt::comb::ShiOp).

comb.shrs (::circt::comb::ShrSOp)

comb.shru (;:circt::comb::ShrUOp)

comb.sub (:circt::comb::SubOp)

comb.xor (::circt::comb::XorOp).
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¥ 5cbc6be6d4 ~  calyx / primitives [ core.futil

@ rachitnigam @reset interface port (#579) [«

A 4 contributors @ 0 ° >

100 lines (93 sloc) 2.87 KB

O 00 J O U0 & W N =
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17
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14
15
16
17
18
19

(A

extern "core.sv" {
/// Primitives
primitive std_const<"share"=1>[WIDTH, VALUE]() —> (out: WIDTH);
primitive std_slice<"share"=1>[IN_WIDTH, OUT_WIDTH] (in: IN_WIDTH) -> (out: OUT_WIDTH);
primitive std_pad<"share"=1>[IN_WIDTH, OUT_WIDTH](in: IN_WIDTH) -> (out: OUT_WIDTH);

/// Logical operators

primitive std_not<"share"=1>[WIDTH] (in: WIDTH) —> (out: WIDTH);

primitive std_and<"share"=1>[WIDTH] (left: WIDTH, right: WIDTH) —> (out: WIDTH);
primitive std_or<"share"=1>[WIDTH] (left: WIDTH, right: WIDTH) —> (out: WIDTH);
primitive std_xor<"share"=1>[WIDTH] (left: WIDTH, right: WIDTH) —> (out: WIDTH);

/// Numerical Operators

primitive std_add<"share"=1>[WIDTH] (left: WIDTH, right: WIDTH) —> (out: WIDTH);
primitive std_sub<"share"=1>[WIDTH] (left: WIDTH, right: WIDTH) -> (out: WIDTH);
primitive std_gt<"share"=1>[WIDTH] (left: WIDTH, right: WIDTH) -> (out: 1);
primitive std_lt<"share"=1>[WIDTH] (left: WIDTH, right: WIDTH) -> (out: 1);
primitive std_eq<"share"=1>[WIDTH] (left: WIDTH, right: WIDTH) —> (out: 1);
primitive std_neq<"share"=1>[WIDTH] (left: WIDTH, right: WIDTH) —> (out: 1);

nrimstsiza e+ macsdlechamarall 1w TWITRTMI(1Tadf+:s WTHATM resmhdte LITATMY «~ ((Atites 1)\

Go to file <o
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Reticle compiles designs to these ISA
Instructions, and then those instructions
get converted to FPGA-specific Verilog.
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But how do we choose the ISA?



But how do we choose the ISA?

And how do we implement it?



But how do we choose the ISA?
And how do we implement it?

Currently: by hand!
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Choosing ISAs by hand may
leave gaps in the ISA.




A key optimization for FPGAs: packing or fusing LUTS!
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Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs."

ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24. 124



A key optimization for FPGAs: packing or fusing LUTS!

If A and C can fit in a single LUT...
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a) before

Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs."
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.
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A key optimization for FPGAs: packing or fusing LUTS!

If A and C can fit in a single LUT... ...combine them!

| | | | | |
| | | | | |
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a) before b) after

Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs."
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.
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A key optimization for FPGAs: packing or fusing LUTS!

If A and C can fit in a single LUT... ...combine them!
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This requires us to have A,C in our ISA.

Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs."
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.
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A key optimization for FPGAs: packing or fusing LUTS!

If A and C can fit in a single LUT... ...combine them!

| | | 1 |
| | l 1 |
| | | 1 |
. | . lao] bl r o [ ] b
| | l I |
| | | 1 |
| 1 I | 1 |
| 1 | | 1 |
| I | | 1 |
| 1 [ | 1 |
| 1 | | I |
| 1 | | 1 |
| 1 | | 1 |
Od i0r Od 08
| ‘ 1 ‘ | | y 1 ‘ |

This requires us to have A,C in our ISA.
Do we also need A,B? Or B,C?

Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs."
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.
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A key optimization for FPGAs: packing or fusing LUTS!

If A and C can fit in a single LUT... ...combine them!

| | | 1 |
| | l 1 |
| | | 1 |
LA ~ o] B ]
| | l I |
| | | 1 |
| 1 I | 1 |
O O~ EBHHE OR!
| 1 | | 1 |
| I | | 1 |
| 1 [ | 1 |
L L b L L b
| 1 | | I |
| 1 | | 1 |
| 1 | | 1 |
Od i0r Od 08
| ‘ 1 ‘ | | y 1 ‘ |

This requires us to have A,C in our ISA.
Do we also need A,B? Or B,C?
Think of all the possible combinations we will have to consider!

Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs."
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.
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Choosing ISA by hand will miss
many fused instructions.
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What about implementing ISAs?



Implementing ISAs by hand is
iInfeasible for large ISAs—and a
great source of bugs!




8-bit add ISA instruction:

pat add i18(a:18, b:18) -> (y:18) {
y:18 = add(a, b) @lut;

}
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8-bit add ISA instruction:

pat add i18(a:18, b:18) -> (y:18) {

}

y:18

add(a, b) @lut;

Xilinx 7-series implementation of 8-bit add:
218, b:18) -> (y:18) {

imp add 18[1, 2] (a
:bool [
:bool
:bool
:bool
:bool
:bool
:bool
:bool
:bool
:bool
bool

t0
tl
t2
t3
t4
t5
t6
t7
t8
t9

t10:

tll:
tl2:
tl3:
tl1l4:
t15:
tlé6:
tl7:
t18:
t19:
t20:
t21:
t22:
t23:
t24:
y:18

bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
18 =

ext]|
ext]|
ext]|
ext]|
ext]|
ext]|
ext]|
ext]|
ext]|
ext]|

ext]|
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ext]|
ext]|
ext]|
ext]|
ext]|

lut?2]
lut?2]
lut?2]
lut?2]
lut?2]
lut?2]
lut?2]

6

lut?2

1(a);
1(a);
1(a);
1(a);
1(a);
1(a);
1(a);
1(a);
1(b);
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1(b);
1(b);

1(b);
1(b);
1(b);
1(b);
1(b);

Y O O O O O OV

1(t0,
1(tl,
1(t2,
1(t3,
1 (t4,
1(t>5,
1 (t6,
(6] (t7,
cat(tle, tl17,

t8) Qa6(??,
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@c6(?7?,
@d6(??,
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8-bit add ISA instruction:

pat add i18(a:18, b:18) -> (y:18) {

}

y:18

add(a, b) @lut;

Xilinx 7-series implementation of 8-bit add:
218, b:18) -> (y:18) {

imp add 18[1, 2] (a
:bool [
:bool
:bool
:bool
:bool
:bool
:bool
:bool
:bool
:bool
bool

t0
tl
t2
t3
t4
t5
t6
t7
t8
t9

t10:

tll:
tl2:
tl3:
tl1l4:
t15:
tlé6:
tl7:
t18:
t19:
t20:
t21:
t22:
t23:
t24:
y:18

bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
18 =

ext]|
ext]|
ext]|
ext]|
ext]|
ext]|
ext]|
ext]|
ext]|
ext]|

ext]|

R O J o O & W NP O

ext]|
ext]|
ext]|
ext]|
ext]|

lut?2]
lut?2]
lut?2]
lut?2]
lut?2]
lut?2]
lut?2]

6

lut?2

1(a);
1(a);
1(a);
1(a);
1(a);
1(a);
1(a);
1(a);
1(b);

~N O O & W DN

1(b);
1(b);

1(b);
1(b);
1(b);
1(b);
1(b);

Y O O O O O OV

1(t0,
1(tl,
1(t2,
1(t3,
1(t4,
1(t5,
1 (t6,
(6] (t7,
cat(tle, tl17,

Implementations by hand for Reticle!

t8) Qa6(??,
t9) @b6(?7?,
@c6(?7?,
@d6(??,
@e6(?7?,
Rf6 (2?2,
@g6(??,
@h6 (2?2,
t20,

£10)
t11)
t12)
t13)
t14)
t15)
t18,

Luis wrote all of these

t19,

= carryadd(a, t24) @c8(??,

2?);
2?);
2?);
2?);
2?);
2?);
2?);
2?);

2?);

t21, t22, t23);



This Is slow, especially if we have multiple
backends and many fused instructions!



S0, can we do it automatically?



We introduce Lakeroad, a tool for

automatically defining and implementing
ISAs for FPGAs.




ISA Exploration
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ISA Implementation Synthesis

ISA Implementation Synthesizer ISA
Implementation
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Core idea of ISA exploration:
define the ISA from instructions
found In real designs.




ISA Exploration

hardware ISA Explorer

designs

ISA Implementation Synthesis

ISA Implementation Synthesizer ISA
Implementation
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ISA Exploration

hardware Instruction Potential Instruction
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ISA Implementation Synthesis

ISA Implementation Synthesizer ISA
Implementation

136



ISA Exploration
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A simple example: enumerate the
Instructions present in
not (a and b)




not (a and b)

NOt

and

a/ \b



Naive approach: instructions are
Just the subexpressions!




not (a and b)

NOt

and

a/ \b



not (10 and i1) 10 and I

NOt
| and

iO/and\H iO/ \H



But we missed one!




not (10 and i1) 10 and I

NOt
| and

iO/and\H iO/ \H



not (10 and 1) not I0 10 and 11

not
| NOt and

io/and\n iO iO/ \H



So how do we capture all instructions?



So how do we capture all instructions?
With rewrites! ©



To convert a node into an instruction,

decide which of its children to convert to arguments.
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To convert a node into an instruction,
decide which of its children to convert to arguments.
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To convert a node into an instruction,
decide which of its children to convert to arguments.
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(binop ?op
=> (apply

(binop ?op
=> (apply

(binop ?op
=> (apply

(binop ?op
=> (apply

?bw (apply (instr ?ast0® ?canonical-args0) ?args0) (apply (instr ?astl ?canonical-argsl) ?argsl))
(instr (binop-ast ?7op ?bw ?ast0® ?astl) (canonicalize (concat ?args0 ?argsl)))
(concat ?args0 ?argsl))

?bw ?left (apply (instr ?astl ?canonical-argsl) ?argsl))
(instr (binopssms ew ey - T VTR
(concat (list

et ?2left) ?argsl)))

This can be encoded as a small set of rewrites in egg!
?bw (apply (1
(instr (binop™e T . rargs0 (list ?right))))
(concat ?args0O® (list ?right)))

?bw ?a ?b)
(instr (binop-ast ?op ?bw (hole ?bw) (hole ?bw)) (canonicalize (list ?a ?b)))
(list ?a ?b))
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NOt

and

/ \



b (10 and i1) [a, b}



--------------------------------

(10 and i1) [a, b}



b (10 and i1) |a, b}



b (I0 and i1) [a, b}



We can even apply other rewrites
simultaneously!




De Morgan’s law

not (a and b) ==> (not a) or (not b)
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--------------------

[ 4



----------------------------------------



----------------------------------------------------------



10 and I

not (i0 and i1)
Instructions!

not 10
10 or I
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10 and I
not (10 and i1)
not 10
10 or I



10 and I
He{_(ig_aﬂgl_i_‘]_) Too specialized —filter it out!

not 10
10 or I
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Rosette Iis a synthesis tool which allows us to ask:

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software, pp. 135-152. 2013.
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Rosette Iis a synthesis tool which allows us to ask:

For all inputs a and b,
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low-level-FPGA-impl(a, b) == high-level-instr-impl(a, b)
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find an implementation of low-level-FPGA-1mpl such that
low-level-FPGA-impl(a, b) == high-level-instr-impl(a, b)

To do so, we need to define the high-level semantics of the instruction,

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software, pp. 135-152. 2013.
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Rosette Iis a synthesis tool which allows us to ask:

For all inputs a and b,
find an implementation of Low-level-FPGA-1mp 1 such that
low-level-FPGA-impl(a, b) == high-level-instr-impl(a, b)

To do so, we need to define the high-level semantics of the instruction,
and the low-level semantics of the FPGA.

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software, pp. 135-152. 2013.
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4.3.2 Bitwise Operators

(bvnot x) — (bitvector n) procedure
x : (bitvector n)

Returns the bitwise negation of the given bitvector value.

Examples:
> (bvnot (bv -1 4))
(bv #x0 4)
> (bvnot (bv 0 4))
(bv #xf 4)

> (define-symbolic b boolean?)
> (bvnot (if b © (bv © 4))) ; This typechecks only when b is false,

(bv #xf 4)
> (vc) ; SO0 Rosette emlits a corresponding assertion.
(ve #t (! b))

(bvand x ...+) — (bitvector n) procedure

x : (bitvector n)

(bvor x ...+) — (bitvector n)
x : (bitvector n)

(bvxor x ...+) — (bitvector n)




10 and I
not (10 and i1)
not 10
10 or I



0 and i1—(bvand 10 i1)

not (i0 and i1)— (bvnot (bvand 10 i1))
not i0 — (bvnot 10)

10 or i1 —>(bvor 10 i1)
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To capture architecture-level semantics of
FPGAs, we simply build an interpreter for
each FPGA component!



178



(define (lut memory 1inputs)
(letx ([1nputs (zero-extend inputs (bitvector (length (bitvector->bits memory))))])
(extract 0 © (bvlshr memory inputs))))
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(define (lut memory 1inputs)
(letx ([1nputs (zero-extend inputs (bitvector (length (bitvector->bits memory))))])

(extract 0 0 (bvlshr memory 1inputs))))

(define (ultrascale-plus—lut6-2 memory -1inputs)

(letx ([lut5-0 (lut (extract 63 32 memory) (extract 4 0 inputs)) ]
lut5-1 (lut (extract 31 0 memory) (extract 4 0 inputs))]
06 (1f (bitvector->bool (bit 5 1nputs)) lut5-0 lut5-1) ]
05 luth5-1])

(list 05 06)))
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10 and I



For all inputs a and b,
find an implementation of low-level-and-1mpl such that
low-level-and-impl(a,b) == high-level-and-impl(a,b)
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For all inputs a and b,

find an implementation of low-level-and-1mpl such that
low-level-and-impl(a,b) == (bvand a b)
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For all inputs a and b,
find a setting of memory such that
(ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)
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For all inputs a and b,
find a setting of memory such that
(ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)

|
Rosette

!
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For all inputs a and b,
find a setting of memory such that
(ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)
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Rosette

memory :
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For all inputs a and b,
find a setting of memory such that
(ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)

|
Rosette

memory :
(bv #x0000000000000008 64)
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For all inputs a and b,
find a setting of memory such that
(ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)

|
Rosette

memory :
(bv #x0000000000000008 64)

LUT2 #(
.INIT(4'h8)

)

186



For all inputs a and b,
find a setting of memory such that
(ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)

|
Rosette

memory :
(bv #x0000000000000008 64)

LUT2 #(
.INIT(4'h8)

)
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To support new FPGA architectures...



To support new FPGA architectures...
...Just provide an interpreter!
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Finally, to compile a new design, we just need to:

1. Insert it Into the egraph

2. Enumerate its instructions via rewrites

3. Extract an implementation composed of instructions in our ISA

4. Output Verilog

If the design isn’t covered with the current ISA, we can:
* Run rewrites to find alternative implementations of the design

e Find a minimal set of new instructions to add to the ISA

191
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Automatically generating compiler backends
from explicit, formal hardware models

e gives rise to emergent optimizations,
e reduces development time, and
e enables verification.
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Automatically generating compiler backends
from explicit, formal hardware models

Complex optimizations emerge

e gives rise to emergent optimizations, 4EEEUEYEIINTFEVIEE
e reduces development time, and
® enableS Verificati()n_ ISA implementations found by

Rosette are correct by construction

193



Proposed Evaluation



Proposed Evaluation



Proposed Evaluation

Paper 1: ISA Implementation Synthesis



Proposed Evaluation

Paper 1: ISA Implementation Synthesis

 (Goal: Evaluate the quality of synthesized implementations; demonstrate ability
to support new FPGAs.

195



Proposed Evaluation

Paper 1: ISA Implementation Synthesis

 (Goal: Evaluate the quality of synthesized implementations; demonstrate ability
to support new FPGAs.

* We will synthesize three ISAs (Reticle, Calyx, MLIR Comb) for three FPGAs
(UltraScale+, ECP5, SOFA)

195



Proposed Evaluation

Paper 1: ISA Implementation Synthesis

 (Goal: Evaluate the quality of synthesized implementations; demonstrate ability
to support new FPGAs.

* We will synthesize three ISAs (Reticle, Calyx, MLIR Comb) for three FPGAs
(UltraScale+, ECP5, SOFA)

Paper 2: ISA Exploration and Lakeroad End-to-End

195



Proposed Evaluation

Paper 1: ISA Implementation Synthesis

 (Goal: Evaluate the quality of synthesized implementations; demonstrate ability
to support new FPGAs.

* We will synthesize three ISAs (Reticle, Calyx, MLIR Comb) for three FPGAs
(UltraScale+, ECP5, SOFA)

Paper 2: ISA Exploration and Lakeroad End-to-End

* (Goal: Demonstrate ability to enumerate a large space of interesting
instructions; demonstrate fast compilation using the egraph.

195



Proposed Evaluation

Paper 1: ISA Implementation Synthesis

 (Goal: Evaluate the quality of synthesized implementations; demonstrate ability
to support new FPGAs.

* We will synthesize three ISAs (Reticle, Calyx, MLIR Comb) for three FPGAs
(UltraScale+, ECP5, SOFA)

Paper 2: ISA Exploration and Lakeroad End-to-End

* (Goal: Demonstrate ability to enumerate a large space of interesting
instructions; demonstrate fast compilation using the egraph.

 We will run Lakeroad end-to-end on a large corpus of hardware benchmarks
(from sources like MachSuite)
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In Closing




Automatically generating compiler backends
from explicit, formal hardware models

e gives rise to emergent optimizations,
e reduces development time, and
e enables verification.



So far, | have provided evidence for this thesis
through Glenside and its application in 3LA.



So far, | have provided evidence for this thesis
through Glenside and its application in 3LA.

| plan to demonstrate this thesis once more
through Lakeroad.
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June 2022: Submit Lakeroad part 2 to 2nd round of ASPLOS
June 2022: Resubmit 3LA paper to 2nd round of ASPLOS
October 2022: Submit Lakeroad part 1 to 3rd round of ASPLOS
Autumn Quarter 2022: Submit 3LA verification paper
Winter Quarter 2023: Fulfill final TA requirement
Winter/Spring Quarter 2023: Deal with Lakeroad and 3LA resubmissions
Spring Quarter 2023: Write thesis and defend
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Thank you!
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Given matrices A and B, pair each row of A with
each column of B, compute their dot products,
and arrange the results back into a matrix.




\Cadl L1l Uu

(access A 1)

List 1 0)))) , ((3), (4))



\Cadl L1l Uu

(access A 1)

Access A as a list of its rows

(List 1 0))))

, ((3), (4))



\Cadl L1l Uu

(access A 1)

(List 1 0))))

, ((4),(2))



\Cadl L1l Uu

(access A 1)

(st 10)))) . ((2), (4))



\Cal L1 UU

(access A 1)

, ((3), (4))
e ; ((2), (4))

of its rows, then

transpose intoa R (( ) ( ))
list of its columns [, ll' ) 2’

(list 1 0)))




\Cadl L1l Uu

(access A 1)

, ((3,2),(2,4))

(access B 1)
(Llist 1 0))))



\Cadl L1l Uu

(access A 1)

, ((3,2),(2,4))
, ((3), (4))
, ((2), (4))
, ((4),(2))

(access B 1)
(List 1 0))))



\Cadl L1l Uu

(access A 1)

, ((3,2),0)
, ((3,2),(2,4))

, ((3), (4))
, ((2), (4))
, ((4),(2))

(transpose

(access B 1)
(Llist 1 0))))



\Cal L1 UU

Compute dot product of every row-column pair

, ((3,2),0)
, ((3,2),(2,4))

, ((3), (4))
, ((2), (4))
, ((4),(2))

(transpose

(access B 1)
(List 1 0))))
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Inputs: a batch of image/activation tensors

and a list of weight/filter tensors
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Filter and region of image are

elementwise multiplied and the

results are summed
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Filter and region of image are

elementwise multiplied and the

results are summed

219



220



221



222



One output channel for each input filter
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\VW 1 1TUUVVO

(Aarraoccec artavatannce 1)

Access weights as a list of 3D filters

) ((O); (C; Kh) KW))
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\VW 1 1TUUVVO

(Aarraoccec artavatannce 1)

Access activations as a batch of 3D images

(LISL U S5 1 2)) , ((N), (C,H,W))

) ((O); (C; Kh; KW))
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\VW 1 1TUUVVO

(Aarraoccec artavatannce 1)

Form windows over input images

1)

(List 0 3 1 2)) , ((N), (C, H, W))

) ((O); (C7 Kh) KW))
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\VW 1 1TUUVVO

(Aarraoccec artavatannce 1)

1)

(List 0 3 1 2)) , ((N), (C, H, W))

These parameters control

window shape and strides

) (O); (C7 Kh) KW))
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\VW 1 1TUUVVO

(Aarraoccec artavatannce 1)

At each location in each new image,

thereis a (C, K, K,,)-shaped window
1) ) ((N; 1, H,;W,)) (C) Kh; KW))
(List 0 3 1 2)) , ((N), (C, H, W))

) ((O); (C; Kh; KW))
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\VW 1 1TUUVVO

(Aarraoccec artavatannce 1)

Pair windows with filters

\UC oo weiglIvo gy ) ((N) 1) H,) W,) O)) (2) C) Kh) KW))
l) ) ((N) 1) H’) W’)) (C) Kh) KW))
(List 0 3 1 2)) , ((N), (C, H, W))

) ((O); (C; Kh; KW))
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\VW 1 1TUUVVO

(Aarraoccec artavatannce 1)

Compute dot product of each window-filter pair

RoT ST — , (N, 1, H’, W', 0), ()

(access weights 1))) - ((N,1,H’,W’,0), (2, C, Kn, Kw))
1) : ((N,1,H’, W’), (C, Ky, Kw))
(List © 3 1 2)) . ((N), (C,H,W))

) ((O); (C; Kh; KW))
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\VW 1 1TUUVVO

(access activations 1) - ((N,0,H’,W’), ())

CUEER Remove and rearrange dimensions

(shape 1 Sh Sw)) , ((N,1,H’,W’,0), ())

(access weights 1))) - ((N,1,H’,W’,0), (2, C, Kn, Kw))
1) - ((N,1,H’,W’), (C, Kn, Kw))
(List © 3 1 2)) . ((N), (C,H,W))

) ((O); (C; Kh; KW))
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Outline

 Motivating Example: Matrix Multiplication
* Access Pattern Definition

* Case Studies
 Reimplementing Matrix Multiplication with Access Patterns
* Implementing 2D Convolution with Access Patterns
 Hardware Mapping as Program Rewriting

* Flexible Hardware Mapping with Equality Saturation
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It ree TENntire werp
array of shape rows by cols.

actors of length cols.
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Can we represent hardware

as a searchable pattern?

233



(compute dotProd
(cartProd ?7a0 ?7al))

where ?7a0 1s of shape
((?n), (?rows))

and 7al 1s of shape
((?cols), (?rows))

With Glenside, we can!
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(compute dotProd
(cartProd ?a0 ?7al))

where ?7a0 1s of shape
((?n), (?rows))

and 7al 1s of shape
((?cols), (?rows))

We can directly rewrite to hardware invocations!

(systolicArray ?rows ?cols 7a0 7al)
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((fn), (7rows))

and 7al 1s of shape
((?cols), (?rows))

(mmwtésy(ﬁécﬂjp%rday ?rows ?cols ?a@ ?al)
(cartProd
(access A 1)
(transpose

(access B 1)
(lList 1 0))))
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((fn), (7rows))

and 7al 1s of shape
((?cols), (?rows))

(mmwtésydactlpp/gday ?rows ?cols ?a0® ?al)
(cartProd
(access A 1)
(transpose

(access B 1)
(lList 1 0))))
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((fn), (7rows))

and 7al 1s of shape
((?cols), (?rows))

(syshol§VAFFEgArray ?rows ?cols ?a0 ?al)
4 2
(access A 1)
(transpose

(access B 1)
(lList 1 0))))

238



Outline

 Motivating Example: Matrix Multiplication
* Access Pattern Definition

* Case Studies
 Reimplementing Matrix Multiplication with Access Patterns
* Implementing 2D Convolution with Access Patterns
 Hardware Mapping as Program Rewriting

* Flexible Hardware Mapping with Equality Saturation
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(windows
(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw))
(access weights 1)))

1)

(List © 3 1 2))

(compute dotProd
(cartProd
(access A 1)
(transpose

(access B 1)

(List 1 0))))
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(windows

(access activ Convolution and matrix (compute dotProd

multiplication have (cartProd
similar structure!

(shape C Kh

(shape 1 Sh (access A 1)

))

| (transpose
(access weights 1)))

(access B 1)

(List 1 0))))

1)
(list © 3 1 2))
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(windows

(access activations 1) (compute dotProd

(shape C Kh Kw) (cartProd 7a0 ?7al))
(shape 1 Sh Sw))

Can we apply our hardware rewrite? Gl

(access weights 1))) ,

and ?7al 1s of shape
1) ((2cols), (2rows))

(List © 3 1 2))
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(windows

(access activations 1) (compute dotProd
(shape C Kh Kw) (cartProd 7a0 ?7al))
(shape 1 Sh Sw)) where ?7a0 1s of shape

(access weights 1))) ((?n), (Zrows))

and 7al 1s of shape
l) ) ((N; 1)H’)W’)7(C) Kh) KW)) ((?CO-LS) . (?FOWS))

(list 0 3 1 2))

, ((0), (C, Kh, Kw))

Our access pattern shapes do not

pass the rewrite's conditions
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(windows

(access activations 1) (compute dotProd
(shape C Kh Kw) (cartProd 7a0 ?7al))
(shape 1 Sh Sw)) where ?7a0 1s of shape

(access weights 1))) ((?n), (?rows))

and 7al 1s of shape
1) , ((7n), (2rows)) ((2cols), (?rows))

(list 0 3 1 2))

' ((?cols), (?rows))

Can we flatten our access patterns?
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?7a > (reshape (flatten ?7a) ?shape)

Flattens and immediately reshapes an access pattern
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?7a > (reshape (flatten ?7a) ?shape)

Flattens and immediately reshapes an access pattern
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(windows

(access activations 1)

(shape C Kh Kw)

(shape 1 Sh Sw))

(access weights 1)))
1) ' ((N,1,H’, W’), (C, Kh, Kw))
(List © 3 1 2))

, ((0), (C, Kh, Kw))
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(reshape (flatten (windows

(access activations 1)

(shape C Kh Kw)

(shape 1 Sh Sw))) ?shape0)

(reshape (flatten (access weights 1)) ?shapel)))
1) . ((N, 1, H’, W), (C, Kh, Kw))
(List © 3 1 2))

, ((0), (C, Kh, Kw))
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(reshape (flatten (windows

(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw))) ?shape0)

(List © 3 1 2))

, ((0), (C, Kh, Kw))
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(reshape (flatten (windows
(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw))) ?shape0)
(reshape (flatten (access weights 1)) ?shapel)))
\LL ' ((N, 1, H’, W’), (C, Kh, Kw))

(list 0 3 1 2))

We need to "bubble” the reshapes to the top

R . ((0), (C, Kh, Kw))
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These rewrites "bubble” reshape through cartProd and compute dotProd

(cartProd
(reshape 7a0 ?shape0)
(reshape ?7al ?shapel)) > (reshape (cartProd ?a0® ?7al) ?newShape)

(compute dotProd
(reshape ?a ?shape)) > (reshape (compute dotProd ?a) ?newShape)

249



(reshape (flatten (windows

(access activations 1)

(shape C Kh Kw)

(shape 1 Sh Sw))) ?shape0)

(reshape (flatten (access weights 1)) ?shapel)))
1) . ((N, 1, H’, W), (C, Kh, Kw))
(List © 3 1 2))

, ((0), (C, Kh, Kw))
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(flatten (windows
(access activations 1)
(shape C Kh Kw)

(shape 1 Sh Sw)))

(flatten (acc reshapes have been moved out, and the access patterns are flattened!
, (N-1-H’-W’), (C-RKh-Kw))

1)
(List 0 3 1 2))

, ((0), (C-Kh-Kw))
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(flatten (windows WAy, LETOWS )

and 7al 1s of shape

access activations 1
( ) ((?cols), (?rows))

(shape C Kh Kw)

(shape 1 Sh Sw)))

(flatten (access weights 1)))) ?shape)
1) ((N-1-H’-W’), (C-Kh-Kw))
(list 0 3 1 2))

Our rewrite can now map

convolution to matrix

multiplication hardware!

, ((0), (C-Kh-Kw))
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?7a > (reshape (flatten ?7a) ?shape)

(cartProd
(reshape 7a0 ?shape0)
(reshape ?al ?shapel)) > (reshape (cartProd ?a0 ?al) ?newShape)

(compute dotProd
(reshape ?a ?shape)) > (reshape (compute dotProd ?a) ?newShape)

These rewrites rediscover the im2col transformation!
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In conclusion,
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In conclusion,
we have presented access patterns as a new tensor representation,

we have used them to build the pure, low-level, binder free IR Glenside,
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In conclusion,
we have presented access patterns as a new tensor representation,
we have used them to build the pure, low-level, binder free IR Glenside,

and have shown how they enable hardware-level tensor program rewriting.
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https://github.com/gussmith23/glenside

Glenside is an actively maintained Rust library!

Try it out and open issues if you have questions!



https://github.com/gussmith23/glenside
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Thank you!



