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Inaccurate vectorization models are a primary source of low-quality compiler results!
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compiler backend

Implicit hardware models in compiler 
backends are potential sources of

imperfect optimization,
difficulties in development,

and hard-to-find bugs! 



This leads directly to my thesis!
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Automatically generating compiler backends 
from explicit, formal hardware models 

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification. 
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optimizer discovers optimizations that 
are not explicitly programmed
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Unlike Ramsey, we will focus not on CPUs, but on fixed-
function accelerators and programmable hardware!



Structure of this talk
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Lakeroad pt. 2
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Glenside in the 3LA Project



Glenside
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Gus Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan, 
Michael Taylor, Luis Ceze, and Zachary Tatlock.  
"Pure tensor program rewriting via access patterns (representation pearl).” MAPS 2021.
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Glenside is a tensor IR* built for equality saturation.

Glenside enables users to model hardware 
accelerators as program rewrites.

These rewrites, in concert with Glenside’s built-in 
rewrites, automatically discover ways to map 
machine learning workloads to accelerators.

23* intermediate representation
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Three design requirements for Glenside:

1. The language must be pure—a necessary requirement for equality saturation.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.
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Let’s begin with an example: 
matrix multiplication!
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We want to represent matrix multiplication in a way that

1. is pure,

2.  is low-level, and

3.  avoids binding.
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Given matrices A and B, pair each row of A with 
each column of B, compute their dot products, 

and arrange the results back into a matrix.
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[ , ][ , , ]

View matrices as lists of rows/columns
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[ , ]×[ , , ]

Take their 
Cartesian product
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[ ,( ), ( ), (, , ),

), (, , ), ( ,( )]

Every row paired 
with every column
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[ ,( ), ( ), (, , ),

), (, , ), ( ),(

map dotProd

]

Map dot product 
operator over every 

row–column pair
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But there’s a problem!
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× =

≠ The values are 
correct, but the 

shape is missing!
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[ , ]×[ , , ]

⏪⏸▶
Shape information 
is present here…

39



[ ,( ), ( ), (, , ),

), (, , ), ( ,( )]

▶

40



[ ,( ), ( ), (, , ),
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▶

…but absent here!
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Cartesian product destroys our 
shape information!
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[ , ]×2D[ , , ]

We introduce a new 
Cartesian product 

operator
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2D Cartesian product 
operator preserves 

shape info
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dotProd

dotProd

But now, map 
operator maps over 
wrong dimension!
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map2D dotProd

We also need a 
new map operator
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Shape information 
is preserved!
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×2D and map2D hard-code which dimensions are iterated over and 
which dimensions are computed on…

…but if tensor shapes change, we’ll need entirely new operators!

Can we encode this in the tensor itself?

(Yes! This is what Glenside’s access patterns do!)
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A tensor looks like…
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(3, 4)
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((3), (4))A 3-length vector of 
4-length vectors

A 3-length vector of 
4-length vectors

An access pattern looks like…
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An access pattern looks like…
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((3, 4), ( ))

access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of 
4-length vectors
A (3, 4)-shaped 

tensor of scalars



An access pattern looks like…
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(( ), (3,4))

access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of 
4-length vectors

A scalar-shaped 
tensor of a single 

(3,4)-shaped tensor



(( ), (3,4)) ((3,4), ( ))

[
,

,
]

[ ], , ,

[ ], , ,

[ ], , ,

[
,

,
]

((3), (4))

Same tensor, three possible views!Same tensor, three possible views!Same tensor, three possible views!
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We redefine common tensor and list operators with access pattern 
semantics, which gives us the Glenside IR!
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57Smith, Gus Henry, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan, Michael Taylor, Luis Ceze, and Zachary Tatlock.  
"Pure tensor program rewriting via access patterns (representation pearl)." MAPS 2021.

Glenside can represent common kernels in machine learning.
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But how is Glenside useful?
More importantly, how does it demonstrate my thesis?
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Glenside in the 3LA project
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What I’ll show

How I’ve shown it so far

How I’ll finish

Introduction

Thesis

Glenside

Lakeroad Introduction

Lakeroad pt. 1

Lakeroad pt. 2
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Glenside in the 3LA Project
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Bo-Yuan Huang, Steven Lyubomirsky, Yi Li, Mike He, Thierry Tambe, Gus Smith, Akash Gaonkar, Vishal Canumalla,  
Gu-Yeon Wei, Aarti Gupta, Zachary Tatlock, Sharad Malik   
"Specialized Accelerators and Compiler Flows: Replacing Accelerator APIs with a Formal Software/Hardware Interface." arXiv 2022.
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Simulating, verifying, and compiling workloads on custom 
accelerators is hard.

3LA is a toolkit which makes it easier, by compiling 
workloads to the ILA simulation and verification 

framework.

Glenside is a key component of 3LA, where it is used to 
discover mappings of workloads to accelerators. 
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Huang, B. Y., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., & Malik, S. (2019). Instruction-level abstraction (ILA): A uniform specification 
for system-on-chip (SOC) verification. ACM Transactions on Design Automation of Electronic Systems, 24(1), [10]. https://doi.org/
10.1145/3282444
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ISA-like interface for their design
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Huang, B. Y., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., & Malik, S. (2019). Instruction-level abstraction (ILA): A uniform specification 
for system-on-chip (SOC) verification. ACM Transactions on Design Automation of Electronic Systems, 24(1), [10]. https://doi.org/
10.1145/3282444

Allows hardware developers to specify 
ISA-like interface for their design

Portable, compiler-friendly, and provides verification and simulators out of the box!
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Not an easy problem!
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3LA

Models ??? ILA instructions
Not an easy problem!

(Spoiler: we use Glenside!)
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Can we use TVM’s Bring Your Own Codegen?

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang.  
"Bring Your Own Codegen to Deep Learning Compiler." arXiv 2021.



bias_add(dense(*, *), *))
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Can we use TVM’s Bring Your Own Codegen?

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang.  
"Bring Your Own Codegen to Deep Learning Compiler." arXiv 2021.



bias_add(dense(*, *), *))

Matches a linear layer: a dense followed by a bias addition.

65

Can we use TVM’s Bring Your Own Codegen?

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang.  
"Bring Your Own Codegen to Deep Learning Compiler." arXiv 2021.



EfficientNet MobileNet V2 ResMLP ResNet-20 Transformer

VTA 0 1 38 2 66

FlexASR 0 0 0 2 0

Moreau, Thierry, et al. "VTA: an open hardware-software stack for deep learning." arXiv preprint arXiv:1807.04188 (2018).
T. Tambe et al., "9.8 A 25mm2 SoC for IoT Devices with 18ms Noise-Robust Speech-to-Text Latency via Bayesian Speech Denoising and Attention-Based Sequence-to-Sequence DNN 
Speech Recognition in 16nm FinFET," 2021 IEEE International Solid- State Circuits Conference (ISSCC), 2021, pp. 158-160, doi: 10.1109/ISSCC42613.2021.9366062. 66



%242 = dense(%240, %241, units=10); 
add(%242, %linear_bias)
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%242 = dense(%240, %241, units=10); 
add(%242, %linear_bias)

Won’t match—this should be a bias_add!
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%242 = dense(%240, %241, units=10); 
add(%242, %linear_bias)

Won’t match—this should be a bias_add!
If only these rewrites were more flexible…
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Let’s use Glenside and equality 
saturation!
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Models

(equality saturation via egg)

Glenside ILA instructions

Gus Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan, Michael Taylor, Luis Ceze, and Zachary Tatlock. 
"Pure tensor program rewriting via access patterns (representation pearl)." MAPS 2021.

Flexible matching: using small exploratory rewrites, 
we expose many more possible mappings!
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Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).



What is equality saturation?
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and keep all of the discovered versions of the 

program!

71Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization." 
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.



Basic idea:
instead of destructively rewriting a program 

with a predetermined list of program rewrites,
run all rewrites simultaneously and repeatedly,
and keep all of the discovered versions of the 

program!

71

Enabled by the equality graph, or egraph, data structure!

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization." 
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.



72Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).
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"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).
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x / x ==> 1

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).
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x / x ==> 1

x * 2 ==> x << 1

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

x * 1 ==> 1



72

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

x * 1 ==> 1



73

a

*
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/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).
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x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
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Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a * 2)/2 == a

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
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Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a * (2/2)

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
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*

1

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a * 1

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
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a

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1



But what if rewrites ran in a 
different order?
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Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a * 2)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
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<<

1
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2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a << 1)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
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a

<<

1

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a << 1)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

We’re stuck!



Ordering matters because 
rewrites are destructive.
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Ordering matters because 
rewrites are destructive.

80

This is called the phase ordering problem!



So why not keep around all 
discovered versions of the program?
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So why not keep around all 
discovered versions of the program?

81

This is what egraphs do!



82Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a * 2)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

a

*

2

/

2
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"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a

*

2

/

2x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
<<

1

(a << 1)



83Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a

*

2

/

2x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
<<

1

(a * 2)(a << 1)



83Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a

*

2

/

2x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
<<

1

(a * 2)(a << 1)

We can fire the rewrites in any order—
all discovered programs will be kept!



84Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

https://egraphs-good.github.io/

https://egraphs-good.github.io/


Models

(equality saturation via egg)

Glenside ILA instructions

Flexible matching: using small exploratory rewrites, 
we expose many more possible mappings!
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(compute dot-product (access-cartesian-product ?x ?w)) 
  => (accelerator-call vta-dense ?x ?w)

(compute reduce-max (access-windows ?a (shape 2) (shape 2))) 
  => (accelerator-call flex-maxpool ...)

(bias-add (dense ?x ?w) ?bias ?axis) 
  => (accelerator-call flex-linear ?x ?w ?bias)

We capture accelerator semantics as program rewrites…



86

(compute dot-product (access-cartesian-product ?x ?w)) 
  => (accelerator-call vta-dense ?x ?w)

(compute reduce-max (access-windows ?a (shape 2) (shape 2))) 
  => (accelerator-call flex-maxpool ...)

(bias-add (dense ?x ?w) ?bias ?axis) 
  => (accelerator-call flex-linear ?x ?w ?bias)

We capture accelerator semantics as program rewrites…

…and our exploratory rewrites are general-purpose rewrites over Glenside!

(cartProd (reshape ?a0 ?shape0) (reshape ?a1 ?shape1)) 
  => (reshape (cartProd ?a0 ?a1) ?newShape)
(compute dotProd (reshape ?a ?shape)) 
  => (reshape (compute dotProd ?a) ?newShape)

?a => (reshape (flatten ?a) ?shape)

?x => (relay-operator-call bias-add ?x  
       (relay-operator-call zeros (shape ...)) 1)

...
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EfficientNet MobileNet V2 ResMLP ResNet-20 Transformer

VTA 0 → 35 1 → 41 38 2 → 22 66

FlexASR 0 → 35 0 → 41 0 → 38 2 → 22 0 → 66
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(cartProd (reshape ?a0 ?shape0) (reshape ?a1 ?shape1)) 
  → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd (reshape ?a ?shape)) 
  → (reshape (compute dotProd ?a) ?newShape)

?a → (reshape (flatten ?a) ?shape)

These rewrites rediscover the im2col 
transformation, without explicitly encoding it!
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What does it show about 
Glenside?
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from explicit, formal hardware models  

• gives rise to emergent optimizations, 
• reduces development time, and 
• enables verification. 
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Automatically generating compiler backends 
from explicit, formal hardware models  

• gives rise to emergent optimizations, 
• reduces development time, and 
• enables verification. 

95

im2col

Writing rewrites is simpler than 
writing a mapper from scratch!

Via mapping to ILA!



What I’ll show

How I’ve shown it so far

How I’ll finish

Introduction

Thesis

Glenside

Lakeroad Introduction

Lakeroad pt. 1

Lakeroad pt. 2
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Accelerator calls are 
predetermined; we’re 

just searching for them!

But we have all of these other 
interesting equivalencies we’ve 

discovered…

What if we could use the 
information in the egraph to tell 

us which hardware to make?

new! new!
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Lakeroad uses similar techniques to 
Glenside (i.e. equality saturation) to map 

computation to custom hardware—in this 
case, FPGAs.
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Lakeroad uses similar techniques to 
Glenside (i.e. equality saturation) to map 

computation to custom hardware—in this 
case, FPGAs.

However, Lakeroad additionally uses what 
it discovers to propose entirely new 

hardware primitives!
104



What are FPGAs?
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Field Programmable Gate Array
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Field Programmable Gate Array
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i.e. easily reprogrammable!



Field Programmable Gate Array

106

i.e. easily reprogrammable!

filled with logic gates 
(and nowadays, much more!)
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Programmable Logic
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Programmable Logic
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Xilinx UltraScale+
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Current FPGA compilers are slow 
and unpredictable.

110



Lavin, Chris, and Alireza Kaviani. "RapidWright: Enabling custom crafted implementations for FPGAs." 2018 IEEE 
26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2018.

“UltraScale+ devices employ DSP blocks that are rated 
at 891MHz for the fastest speed grade. Nonetheless, 
large designs implemented on FPGAs typically achieve 
system frequencies lower than 400MHz.”
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behavioral Verilog 

gate-level representation 

FPGA-level Verilog
level of abstraction
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Recent works (Reticle!) have attempted a 
more direct, software-compiler-like approach.
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behavioral Verilog 
level of abstraction
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Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. "Reticle: a virtual machine for programming modern FPGAs." PLDI 2021.
Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz, Jack Koenig, Chris Lattner, Andrew Lenharth et al. 
"MLIR as Hardware Compiler Infrastructure." WOSET 2021.
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Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. "Reticle: a virtual machine for programming modern FPGAs." PLDI 2021.
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behavioral Verilog 

FPGA-level Verilog

level of abstraction
intermediate representation (IR)

…

115
Callahan, Timothy J., Philip Chong, Andre DeHon, and John Wawrzynek. “Fast module mapping and placement for datapaths in FPGAs." FPGA 1998.

Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. "Reticle: a virtual machine for programming modern FPGAs." PLDI 2021.
Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz, Jack Koenig, Chris Lattner, Andrew Lenharth et al. 
"MLIR as Hardware Compiler Infrastructure." WOSET 2021.



To implement this, we need an FPGA 
“ISA”: the lowest-level IR which gets 

converted to FPGA-ready Verilog. 
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behavioral Verilog 

FPGA-level Verilog

level of abstraction

FPGA ISA

…
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New FPGA compiler toolchains 
specify their ISAs explicitly!
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Reticle compiles designs to these ISA 
instructions, and then those instructions 
get converted to FPGA-specific Verilog.
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But how do we choose the ISA?
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But how do we choose the ISA?
And how do we implement it?
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But how do we choose the ISA?
And how do we implement it?

Currently: by hand!
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Choosing ISAs by hand may 
leave gaps in the ISA.
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124Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs." 
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.

A key optimization for FPGAs: packing or fusing LUTs!

If A and C can fit in a single LUT… …combine them!

This requires us to have A,C in our ISA.
Do we also need A,B? Or B,C?

Think of all the possible combinations we will have to consider!



Choosing ISA by hand will miss 
many fused instructions.
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What about implementing ISAs?
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Implementing ISAs by hand is 
infeasible for large ISAs—and a 

great source of bugs!
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8-bit add ISA instruction:

pat add_i8(a:i8, b:i8) -> (y:i8) {
    y:i8 = add(a, b) @lut;
}
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8-bit add ISA instruction:

pat add_i8(a:i8, b:i8) -> (y:i8) {
    y:i8 = add(a, b) @lut;
}

Xilinx 7-series implementation of 8-bit add:

imp add_i8[1, 2](a:i8, b:i8) -> (y:i8) {
    t0:bool = ext[0](a);
    t1:bool = ext[1](a);
    t2:bool = ext[2](a);
    t3:bool = ext[3](a);
    t4:bool = ext[4](a);
    t5:bool = ext[5](a);
    t6:bool = ext[6](a);
    t7:bool = ext[7](a);
    t8:bool = ext[0](b);
    t9:bool = ext[1](b);
    t10:bool = ext[2](b);
    t11:bool = ext[3](b);
    t12:bool = ext[4](b);
    t13:bool = ext[5](b);
    t14:bool = ext[6](b);
    t15:bool = ext[7](b);
    t16:bool = lut2[6](t0, t8) @a6(??, ??);
    t17:bool = lut2[6](t1, t9) @b6(??, ??);
    t18:bool = lut2[6](t2, t10) @c6(??, ??);
    t19:bool = lut2[6](t3, t11) @d6(??, ??);
    t20:bool = lut2[6](t4, t12) @e6(??, ??);
    t21:bool = lut2[6](t5, t13) @f6(??, ??);
    t22:bool = lut2[6](t6, t14) @g6(??, ??);
    t23:bool = lut2[6](t7, t15) @h6(??, ??);
    t24:i8 = cat(t16, t17, t18, t19, t20, t21, t22, t23);
    y:i8 = carryadd(a, t24) @c8(??, ??);
} 128



8-bit add ISA instruction:

pat add_i8(a:i8, b:i8) -> (y:i8) {
    y:i8 = add(a, b) @lut;
}

Xilinx 7-series implementation of 8-bit add:

imp add_i8[1, 2](a:i8, b:i8) -> (y:i8) {
    t0:bool = ext[0](a);
    t1:bool = ext[1](a);
    t2:bool = ext[2](a);
    t3:bool = ext[3](a);
    t4:bool = ext[4](a);
    t5:bool = ext[5](a);
    t6:bool = ext[6](a);
    t7:bool = ext[7](a);
    t8:bool = ext[0](b);
    t9:bool = ext[1](b);
    t10:bool = ext[2](b);
    t11:bool = ext[3](b);
    t12:bool = ext[4](b);
    t13:bool = ext[5](b);
    t14:bool = ext[6](b);
    t15:bool = ext[7](b);
    t16:bool = lut2[6](t0, t8) @a6(??, ??);
    t17:bool = lut2[6](t1, t9) @b6(??, ??);
    t18:bool = lut2[6](t2, t10) @c6(??, ??);
    t19:bool = lut2[6](t3, t11) @d6(??, ??);
    t20:bool = lut2[6](t4, t12) @e6(??, ??);
    t21:bool = lut2[6](t5, t13) @f6(??, ??);
    t22:bool = lut2[6](t6, t14) @g6(??, ??);
    t23:bool = lut2[6](t7, t15) @h6(??, ??);
    t24:i8 = cat(t16, t17, t18, t19, t20, t21, t22, t23);
    y:i8 = carryadd(a, t24) @c8(??, ??);
}

Luis wrote all of these 
implementations by hand for Reticle!
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This is slow, especially if we have multiple 
backends and many fused instructions!
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So, can we do it automatically?
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We introduce Lakeroad, a tool for 
automatically defining and implementing 

ISAs for FPGAs.
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Core idea of ISA exploration: 
define the ISA from instructions 

found in real designs.
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A simple example: enumerate the 
instructions present in  

not (a and b)
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not (a and b)

not

and

a b



Naive approach: instructions are 
just the subexpressions!
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not (a and b)

a b

not

and

a b

and
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not (i0 and i1) i0 and i1 

i0 i1

not

and
i0 i1

and



But we missed one!
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not (i0 and i1) i0 and i1 

i0 i1

not

and
i0 i1

and
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not i0

not

i0

not (i0 and i1) i0 and i1 

i0 i1

not

and
i0 i1

and



So how do we capture all instructions?
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So how do we capture all instructions?
With rewrites! 
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not

and

a b

not

and and

i0 i1

To convert a node into an instruction,  
decide which of its children to convert to arguments.

i0 i1



152

not

and

a b

not

and

not

and

i0 i1

To convert a node into an instruction,  
decide which of its children to convert to arguments.

i0 i1

i0
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(binop ?op ?bw (apply (instr ?ast0 ?canonical-args0) ?args0) (apply (instr ?ast1 ?canonical-args1) ?args1)) 
 => (apply (instr (binop-ast ?op ?bw ?ast0 ?ast1) (canonicalize (concat ?args0 ?args1)))  
           (concat ?args0 ?args1)) 

(binop ?op ?bw ?left (apply (instr ?ast1 ?canonical-args1) ?args1))  
 => (apply (instr (binop-ast ?op ?bw (hole ?bw) ?ast1) (canonicalize (concat (list ?left) ?args1)))  
           (concat (list ?left) ?args1)) 

(binop ?op ?bw (apply (instr ?ast0 ?canonical-args0) ?args0) ?right)  
 => (apply (instr (binop-ast ?op ?bw ?ast0 (hole ?bw)) (canonicalize (concat ?args0 (list ?right))))  
           (concat ?args0 (list ?right)))  

(binop ?op ?bw ?a ?b)  
 => (apply (instr (binop-ast ?op ?bw (hole ?bw) (hole ?bw)) (canonicalize (list ?a ?b)))  
           (list ?a ?b))

This can be encoded as a small set of rewrites in egg!



154

not

and

a b



155

not

and

a b

apply

(i0 and i1) [a, b]
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not

and

a b

apply

(i0 and i1) [a, b]

apply

(not i0)
[(a and b)]

apply

(not (i0 and i1))
[a, b]



We can even apply other rewrites 
simultaneously!
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not (a and b) ==> (not a) or (not b) 

De Morgan’s law
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not

and

a b

…

…
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not

and

a b

…

… or

not not
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not

and

a b

…

… or

not not

apply

(i0 or i1)

[(not a), (not b)]
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i0 or i1

i0 and i1

not i0
not (i0 and i1)Our potential 

instructions!
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not i0
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i0 or i1

i0 and i1

not i0
not (i0 and i1) Too specialized—filter it out!
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Rosette is a synthesis tool which allows us to ask:

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas, 
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find an implementation of low-level-FPGA-impl such that
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For all inputs a and b,
find an implementation of low-level-FPGA-impl such that
   low-level-FPGA-impl(a, b) == high-level-instr-impl(a, b)

Rosette is a synthesis tool which allows us to ask:

To do so, we need to define the high-level semantics of the instruction,
and the low-level semantics of the FPGA.

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas, 
new paradigms, and reflections on programming & software, pp. 135-152. 2013.
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i0 or i1

i0 and i1

not i0
not (i0 and i1)
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(bvor i0 i1)

(bvand i0 i1)

(bvnot i0)
(bvnot (bvand i0 i1))

i0 or i1

i0 and i1

not i0
not (i0 and i1)
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To capture architecture-level semantics of 
FPGAs, we simply build an interpreter for 

each FPGA component!
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(define (lut memory inputs) 
  (let* ([inputs (zero-extend inputs (bitvector (length (bitvector->bits memory))))]) 
    (extract 0 0 (bvlshr memory inputs)))) 
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(define (lut memory inputs) 
  (let* ([inputs (zero-extend inputs (bitvector (length (bitvector->bits memory))))]) 
    (extract 0 0 (bvlshr memory inputs)))) 

(define (ultrascale-plus—lut6-2 memory inputs) 
  (let* ([lut5-0 (lut (extract 63 32 memory) (extract 4 0 inputs))] 
         [lut5-1 (lut (extract 31 0 memory) (extract 4 0 inputs))] 
         [O6 (if (bitvector->bool (bit 5 inputs)) lut5-0 lut5-1)] 
         [O5 lut5-1]) 
    (list O5 O6)))
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i0 or i1

i0 and i1

not i0
not (i0 and i1)



181

For all inputs a and b,

find an implementation of low-level-and-impl such that

   low-level-and-impl(a,b) == high-level-and-impl(a,b)
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For all inputs a and b,

find an implementation of low-level-and-impl such that

   low-level-and-impl(a,b) == (bvand a b)
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For all inputs a and b,

find a setting of memory such that

   (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)
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Finally, to compile a new design, we just need to:

1. Insert it into the egraph

2. Enumerate its instructions via rewrites

3. Extract an implementation composed of instructions in our ISA

4. Output Verilog

If the design isn’t covered with the current ISA, we can:

• Run rewrites to find alternative implementations of the design

• Find a minimal set of new instructions to add to the ISA
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Automatically generating compiler backends 
from explicit, formal hardware models  

• gives rise to emergent optimizations, 
• reduces development time, and 
• enables verification. 
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Complex optimizations emerge 
from small logic rewrites

It’s automatic!

ISA implementations found by 
Rosette are correct by construction
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Paper 1: ISA Implementation Synthesis

• Goal: Evaluate the quality of synthesized implementations; demonstrate ability 
to support new FPGAs.

• We will synthesize three ISAs (Reticle, Calyx, MLIR Comb) for three FPGAs 
(UltraScale+, ECP5, SOFA)

Paper 2: ISA Exploration and Lakeroad End-to-End

• Goal: Demonstrate ability to enumerate a large space of interesting 
instructions; demonstrate fast compilation using the egraph.

• We will run Lakeroad end-to-end on a large corpus of hardware benchmarks 
(from sources like MachSuite)
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In Closing
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Automatically generating compiler backends 
from explicit, formal hardware models  

• gives rise to emergent optimizations, 
• reduces development time, and 
• enables verification. 
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So far, I have provided evidence for this thesis 
through Glenside and its application in 3LA.
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So far, I have provided evidence for this thesis 
through Glenside and its application in 3LA.
I plan to demonstrate this thesis once more 

through Lakeroad.
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Given matrices A and B, pair each row of A with 
each column of B, compute their dot products, 

and arrange the results back into a matrix.
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[

[

Inputs: a batch of image/activation tensors 
and a list of weight/filter tensors

[

[
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Filter and region of image are 
elementwise multiplied and the 

results are summed
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[
[

One output channel for each input filter
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    (windows                  

     (access activations 1)   

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))      

  1) 

 (list 0 3 1 2))

;   ((O), (C, Kh, Kw))

S

Access weights as a list of 3D filters
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S

Access activations as a batch of 3D images

;   ((N), (C, H, W))
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  1) 
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S

These parameters control 
window shape and strides

;   ((N), (C, H, W))
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    (windows                  

     (access activations 1)   

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))      

  1) 

 (list 0 3 1 2))

;   ((O), (C, Kh, Kw))

S
At each location in each new image, 
there is a (C, Kh, Kw)-shaped window

;   ((N), (C, H, W))

;   ((N, 1, H’, W’), (C, Kh, Kw))
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  1) 

 (list 0 3 1 2))
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S

Pair windows with filters
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    (windows                  

     (access activations 1)   

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))      

  1) 

 (list 0 3 1 2))

;   ((O), (C, Kh, Kw))

SCompute dot product of each window–filter pair

;   ((N), (C, H, W))

;   ((N, 1, H’, W’), (C, Kh, Kw))

;   ((N, 1, H’, W’, O), (2, C, Kh, Kw))

;   ((N, 1, H’, W’, O), ())
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    (windows                  

     (access activations 1)   

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))      

  1) 

 (list 0 3 1 2))

;   ((O), (C, Kh, Kw))

Remove and rearrange dimensions

;   ((N), (C, H, W))

;   ((N, 1, H’, W’), (C, Kh, Kw))

;   ((N, 1, H’, W’, O), (2, C, Kh, Kw))

;   ((N, 1, H’, W’, O), ())

;   ((N, O, H’, W’), ())
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It reads an entire weight 
array of shape rows by cols. 

It then pushes n vectors of 
length rows through the array.

It computes the dot product 
of every vector with every 
column of the weights.

Finally, it writes out n 
vectors of length cols.
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Can we represent  hardware 
as a searchable pattern?
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(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) With Glenside, we can!
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(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

(systolicArray ?rows ?cols ?a0 ?a1)
We can directly rewrite  to hardware invocations!
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(systolicArray 

  4 2                

  (access A 1)  

  (transpose              

   (access B 1)     

   (list 1 0))))

   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

(systolicArray ?rows ?cols ?a0 ?a1)
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    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

(compute dotProd 

 (cartProd               

  (access A 1) 

  (transpose             

   (access B 1)    

   (list 1 0))))
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    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

(compute dotProd 

 (cartProd               

  (access A 1) 

  (transpose             

   (access B 1)    

   (list 1 0))))

A 3-length vector of 4-
length vectors

Convolution and matrix 
multiplication have 

similar structure!
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    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

Can we apply our hardware rewrite?
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    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) ; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))
Our access pattern shapes do not 

pass the rewrite’s conditions
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    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) ; ((?n), (?rows))

; ((?cols), (?rows))

Can we flatten our access patterns?
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?a → (reshape (flatten ?a) ?shape)

Flattens and immediately reshapes an access pattern
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     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

246



    (reshape (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) ?shape0) 

    (reshape (flatten (access weights 1)) ?shape1)))    

  1) 

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))
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    (reshape (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) ?shape0) 

    (reshape (flatten (access weights 1)) ?shape1)))    

  1) 

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

But our access pattern shapes haven’t changed!
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    (reshape (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) ?shape0) 

    (reshape (flatten (access weights 1)) ?shape1)))    

  1) 

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

We need to “bubble” the reshapes to the top
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(cartProd 
 (reshape ?a0 ?shape0) 
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd  
 (reshape ?a ?shape))   → (reshape (compute dotProd ?a) ?newShape)

These rewrites “bubble” reshape through cartProd and compute dotProd
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    (reshape (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) ?shape0) 

    (reshape (flatten (access weights 1)) ?shape1)))    

  1) 

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

250



    (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) 

    (flatten (access weights 1)))) ?shape)   

  1) 

 (list 0 3 1 2))

; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

reshapes have been moved out, and the access patterns are flattened!
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    (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) 

    (flatten (access weights 1)))) ?shape)   

  1) 

 (list 0 3 1 2))

; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

Our rewrite can now map 
convolution to matrix 

multiplication hardware!
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(cartProd 
 (reshape ?a0 ?shape0) 
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd  
 (reshape ?a ?shape))   → (reshape (compute dotProd ?a) ?newShape)

?a → (reshape (flatten ?a) ?shape)

These rewrites rediscover the im2col transformation!
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In conclusion,

we have presented access patterns as a new tensor representation,

we have used them to build the pure, low-level, binder free IR Glenside, 

and have shown how they enable hardware-level tensor program rewriting.
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https://github.com/gussmith23/glenside
Glenside is an actively maintained Rust library! 

Try it out and open issues if you have questions!

255

https://github.com/gussmith23/glenside
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Thank you!
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