
May 6th, 2022

Generating Compiler Backends
from Formal Models of Hardware
Gus Smith’s Generals Exam

1

2

3

compiler

compiler

code

4machine code

compiler frontend

code

5machine code

target-independent
optimization

compiler backend

…

compiler frontend

code

5machine code

target-independent
optimization

compiler backend

…

Target-specific optimizations
and code generation

6

code from previous 
compiler stage

machine code

compiler backend

6

code from previous 
compiler stage

machine code

compiler backend

6

code from previous 
compiler stage

machine code

compiler backend
Our focus!

7

code from previous 
compiler stage

machine code

compiler backend

8

code from previous 
compiler stage

machine code

compiler backend

8

code from previous 
compiler stage

machine code

compiler backend

memory planning

8

code from previous 
compiler stage

machine code

compiler backend

memory planning instruction selector

9

code from previous 
compiler stage

machine code

compiler backend

10

10

Inaccurate vectorization models are a primary source of low-quality compiler results!

11

code from previous 
compiler stage

machine code

compiler backend

11

code from previous 
compiler stage

machine code

compiler backend

12

code from previous 
compiler stage

machine code

compiler backend

13

code from previous 
compiler stage

machine code

compiler backend

14

compiler backend

Implicit hardware models in compiler
backends are potential sources of

14

compiler backend

Implicit hardware models in compiler
backends are potential sources of

imperfect optimization,

14

compiler backend

Implicit hardware models in compiler
backends are potential sources of

imperfect optimization,
difficulties in development,

14

compiler backend

Implicit hardware models in compiler
backends are potential sources of

imperfect optimization,
difficulties in development,

and hard-to-find bugs!

This leads directly to my thesis!

15

Automatically generating compiler backends
from explicit, formal hardware models

16

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,

16

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,
• reduces development time, and

16

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification.

16

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification.

16

optimizer discovers optimizations that
are not explicitly programmed

17

17

Unlike Ramsey, we will focus not on CPUs, but on fixed-
function accelerators and programmable hardware!

Structure of this talk

18

What I’ll show

How I’ve shown it so far

How I’ll finish

Introduction

Thesis

Glenside

Glenside in the 3LA Project

Lakeroad Introduction

Lakeroad pt. 1

Lakeroad pt. 2

19

What I’ll show

How I’ve shown it so far

How I’ll finish

Introduction

Thesis

Glenside

Lakeroad Introduction

Lakeroad pt. 1

Lakeroad pt. 2

20

Glenside in the 3LA Project

Glenside

21

22

Gus Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan,
Michael Taylor, Luis Ceze, and Zachary Tatlock.  
"Pure tensor program rewriting via access patterns (representation pearl).” MAPS 2021.

23

Glenside is a tensor IR* built for equality saturation.

23* intermediate representation

Glenside is a tensor IR* built for equality saturation.

Glenside enables users to model hardware
accelerators as program rewrites.

23* intermediate representation

Glenside is a tensor IR* built for equality saturation.

Glenside enables users to model hardware
accelerators as program rewrites.

These rewrites, in concert with Glenside’s built-in
rewrites, automatically discover ways to map
machine learning workloads to accelerators.

23* intermediate representation

24

Three design requirements for Glenside:

24

Three design requirements for Glenside:

1. The language must be pure—a necessary requirement for equality saturation.

24

Three design requirements for Glenside:

1. The language must be pure—a necessary requirement for equality saturation.

2. The language must be low-level, letting us reason about hardware.

24

Three design requirements for Glenside:

1. The language must be pure—a necessary requirement for equality saturation.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

24

Let’s begin with an example:
matrix multiplication!

25

26

We want to represent matrix multiplication in a way that

26

We want to represent matrix multiplication in a way that

1. is pure,

26

We want to represent matrix multiplication in a way that

1. is pure,

2. is low-level, and

26

We want to represent matrix multiplication in a way that

1. is pure,

2. is low-level, and

3. avoids binding.

26

Given matrices A and B, pair each row of A with
each column of B, compute their dot products,

and arrange the results back into a matrix.

27

28

[,][, ,]

View matrices as lists of rows/columns

29

[,][, ,]

View matrices as lists of rows/columns

29

[,]×[, ,]

Take their
Cartesian product

30

[,(), (), (, ,),

), (, ,), (,()]

Every row paired
with every column

31

[,(), (), (, ,),

), (, ,), (),(

map dotProd

]

Map dot product
operator over every

row–column pair

32

[, , ,
, ,]

33

But there’s a problem!

34

[, , ,
, ,]

× =

≠ The values are
correct, but the

shape is missing!

35

[, , ,
, ,]

36

[, , ,
, ,]

⏪

36

[,(), (), (, ,),

), (, ,), (),(

map dot-product

]

37

⏪

[,(), (), (, ,),

), (, ,), (,()]

38

⏪

[,]×[, ,]

⏪

39

[,]×[, ,]

⏪⏸

39

[,]×[, ,]

⏪⏸
Shape information
is present here…

39

[,]×[, ,]

⏪⏸▶
Shape information
is present here…

39

[,(), (), (, ,),

), (, ,), (,()]

▶

40

[,(), (), (, ,),

), (, ,), (,()]

▶

…but absent here!

40

Cartesian product destroys our
shape information!

41

[,]×2D[, ,]

We introduce a new
Cartesian product

operator

42

[,(), ()],,

,),)],,

,), (,

(

)]

[

[(

[(]

2D Cartesian product
operator preserves

shape info

43

[,(), ()],,

,),)],,

,), (,

(

)]

[

[(

[(]

map dotProd

44

[,(), ()],,

,),)],,

,), (,

(

)]

[

[(

[(]

dotProd

dotProd

dotProd

But now, map
operator maps over
wrong dimension!

45

[,(), ()],,

,),)],,

,), (,

(

)]

[

[(

[(]

map2D dotProd

We also need a
new map operator

46

[,(),)],,

,),)],,

,), ,

(

)]

[

(

(]

dotProd

dotProd

dotProd

dotProd (

dotProd[

[(dotProd

2D map operator
maps over correct

dimension 47

[,]

]

[,
,][,

,][

48

49

Shape information
is preserved!

49

50

×2D and map2D hard-code which dimensions are iterated over and
which dimensions are computed on…

50

×2D and map2D hard-code which dimensions are iterated over and
which dimensions are computed on…

…but if tensor shapes change, we’ll need entirely new operators!

50

×2D and map2D hard-code which dimensions are iterated over and
which dimensions are computed on…

…but if tensor shapes change, we’ll need entirely new operators!

Can we encode this in the tensor itself?

50

×2D and map2D hard-code which dimensions are iterated over and
which dimensions are computed on…

…but if tensor shapes change, we’ll need entirely new operators!

Can we encode this in the tensor itself?

(Yes! This is what Glenside’s access patterns do!)

50

A tensor looks like…

51

(3, 4)

[
,

,
]

((3), (4))A 3-length vector of
4-length vectors

A 3-length vector of
4-length vectors

An access pattern looks like…

52

[
,

,
]

((3), (4))

access dimensions 
(iterated over)

A 3-length vector of
4-length vectors

A 3-length vector of
4-length vectors

An access pattern looks like…

52

[
,

,
]

((3), (4))

access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of
4-length vectors

A 3-length vector of
4-length vectors

An access pattern looks like…

52

[
,

,
]

[], , ,

[], , ,

[], , ,

An access pattern looks like…

53

((3, 4), ())

access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of
4-length vectors
A (3, 4)-shaped

tensor of scalars

An access pattern looks like…

54

((), (3,4))

access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of
4-length vectors

A scalar-shaped
tensor of a single

(3,4)-shaped tensor

((), (3,4)) ((3,4), ())

[
,

,
]

[], , ,

[], , ,

[], , ,

[
,

,
]

((3), (4))

Same tensor, three possible views!Same tensor, three possible views!Same tensor, three possible views!
55

We redefine common tensor and list operators with access pattern
semantics, which gives us the Glenside IR!

56

57Smith, Gus Henry, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan, Michael Taylor, Luis Ceze, and Zachary Tatlock.  
"Pure tensor program rewriting via access patterns (representation pearl)." MAPS 2021.

Glenside can represent common kernels in machine learning.

58

But how is Glenside useful?

58

But how is Glenside useful?
More importantly, how does it demonstrate my thesis?

58

Glenside in the 3LA project

59

What I’ll show

How I’ve shown it so far

How I’ll finish

Introduction

Thesis

Glenside

Lakeroad Introduction

Lakeroad pt. 1

Lakeroad pt. 2

60

Glenside in the 3LA Project

61

Bo-Yuan Huang, Steven Lyubomirsky, Yi Li, Mike He, Thierry Tambe, Gus Smith, Akash Gaonkar, Vishal Canumalla,  
Gu-Yeon Wei, Aarti Gupta, Zachary Tatlock, Sharad Malik  
"Specialized Accelerators and Compiler Flows: Replacing Accelerator APIs with a Formal Software/Hardware Interface." arXiv 2022.

62

Simulating, verifying, and compiling workloads on custom
accelerators is hard.

62

Simulating, verifying, and compiling workloads on custom
accelerators is hard.

3LA is a toolkit which makes it easier, by compiling
workloads to the ILA simulation and verification

framework.

62

Simulating, verifying, and compiling workloads on custom
accelerators is hard.

3LA is a toolkit which makes it easier, by compiling
workloads to the ILA simulation and verification

framework.

Glenside is a key component of 3LA, where it is used to
discover mappings of workloads to accelerators.

62

Huang, B. Y., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., & Malik, S. (2019). Instruction-level abstraction (ILA): A uniform specification
for system-on-chip (SOC) verification. ACM Transactions on Design Automation of Electronic Systems, 24(1), [10]. https://doi.org/
10.1145/3282444

63

Huang, B. Y., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., & Malik, S. (2019). Instruction-level abstraction (ILA): A uniform specification
for system-on-chip (SOC) verification. ACM Transactions on Design Automation of Electronic Systems, 24(1), [10]. https://doi.org/
10.1145/3282444

Allows hardware developers to specify
ISA-like interface for their design

63

Huang, B. Y., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., & Malik, S. (2019). Instruction-level abstraction (ILA): A uniform specification
for system-on-chip (SOC) verification. ACM Transactions on Design Automation of Electronic Systems, 24(1), [10]. https://doi.org/
10.1145/3282444

Allows hardware developers to specify
ISA-like interface for their design

Portable, compiler-friendly, and provides verification and simulators out of the box!

63

3LA

Models ??? ILA instructions

64

3LA

Models ??? ILA instructions
Not an easy problem!

64

3LA

Models ??? ILA instructions
Not an easy problem!

(Spoiler: we use Glenside!)

64

65

Can we use TVM’s Bring Your Own Codegen?

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang.  
"Bring Your Own Codegen to Deep Learning Compiler." arXiv 2021.

bias_add(dense(*, *), *))

65

Can we use TVM’s Bring Your Own Codegen?

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang.  
"Bring Your Own Codegen to Deep Learning Compiler." arXiv 2021.

bias_add(dense(*, *), *))

Matches a linear layer: a dense followed by a bias addition.

65

Can we use TVM’s Bring Your Own Codegen?

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang.  
"Bring Your Own Codegen to Deep Learning Compiler." arXiv 2021.

EfficientNet MobileNet V2 ResMLP ResNet-20 Transformer

VTA 0 1 38 2 66

FlexASR 0 0 0 2 0

Moreau, Thierry, et al. "VTA: an open hardware-software stack for deep learning." arXiv preprint arXiv:1807.04188 (2018).
T. Tambe et al., "9.8 A 25mm2 SoC for IoT Devices with 18ms Noise-Robust Speech-to-Text Latency via Bayesian Speech Denoising and Attention-Based Sequence-to-Sequence DNN
Speech Recognition in 16nm FinFET," 2021 IEEE International Solid- State Circuits Conference (ISSCC), 2021, pp. 158-160, doi: 10.1109/ISSCC42613.2021.9366062. 66

%242 = dense(%240, %241, units=10);
add(%242, %linear_bias)

67

%242 = dense(%240, %241, units=10);
add(%242, %linear_bias)

Won’t match—this should be a bias_add!

67

%242 = dense(%240, %241, units=10);
add(%242, %linear_bias)

Won’t match—this should be a bias_add!
If only these rewrites were more flexible…

67

Let’s use Glenside and equality
saturation!

68

Models

(equality saturation via egg)

Glenside ILA instructions

Gus Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan, Michael Taylor, Luis Ceze, and Zachary Tatlock. 
"Pure tensor program rewriting via access patterns (representation pearl)." MAPS 2021.

Flexible matching: using small exploratory rewrites,
we expose many more possible mappings!

69

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

What is equality saturation?

70

Basic idea:

71Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization." 
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.

Basic idea:
instead of destructively rewriting a program

with a predetermined list of program rewrites,

71Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization." 
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.

Basic idea:
instead of destructively rewriting a program

with a predetermined list of program rewrites,
run all rewrites simultaneously and repeatedly,

71Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization." 
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.

Basic idea:
instead of destructively rewriting a program

with a predetermined list of program rewrites,
run all rewrites simultaneously and repeatedly,
and keep all of the discovered versions of the

program!

71Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization." 
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.

Basic idea:
instead of destructively rewriting a program

with a predetermined list of program rewrites,
run all rewrites simultaneously and repeatedly,
and keep all of the discovered versions of the

program!

71

Enabled by the equality graph, or egraph, data structure!

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. "Equality saturation: a new approach to optimization." 
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 264-276. 2009.

72Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

72Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

x * 1 ==> 1

72

x / x ==> 1

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

x * 1 ==> 1

72

x / x ==> 1

x * 2 ==> x << 1

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

x * 1 ==> 1

72

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

x * 1 ==> 1

73

a

*

2

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a * 2)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

73

a

*

2

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a * 2)/2 == a

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

74

a

*

2

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a * (2/2)

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

75

a

*

1

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a * 1

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

76

a

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

But what if rewrites ran in a
different order?

77

78

a

*

2

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a * 2)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

79

a

<<

1

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a << 1)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

79

a

<<

1

/

2

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a << 1)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

We’re stuck!

Ordering matters because
rewrites are destructive.

80

Ordering matters because
rewrites are destructive.

80

This is called the phase ordering problem!

So why not keep around all
discovered versions of the program?

81

So why not keep around all
discovered versions of the program?

81

This is what egraphs do!

82Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

(a * 2)/2

x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1

a

*

2

/

2

83Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a

*

2

/

2x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
<<

1

(a << 1)

83Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a

*

2

/

2x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
<<

1

(a * 2)(a << 1)

83Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

a

*

2

/

2x / x ==> 1

x * 2 ==> x << 1

(x * y)/z ==> x * (y/z)

x * 1 ==> 1
<<

1

(a * 2)(a << 1)

We can fire the rewrites in any order—
all discovered programs will be kept!

84Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.  
"egg: Fast and extensible equality saturation." Proceedings of the ACM on Programming Languages 5, no. POPL (2021).

https://egraphs-good.github.io/

https://egraphs-good.github.io/

Models

(equality saturation via egg)

Glenside ILA instructions

Flexible matching: using small exploratory rewrites,
we expose many more possible mappings!

85

86

86

(compute dot-product (access-cartesian-product ?x ?w))
 => (accelerator-call vta-dense ?x ?w)

(compute reduce-max (access-windows ?a (shape 2) (shape 2)))
 => (accelerator-call flex-maxpool ...)

(bias-add (dense ?x ?w) ?bias ?axis)
 => (accelerator-call flex-linear ?x ?w ?bias)

We capture accelerator semantics as program rewrites…

86

(compute dot-product (access-cartesian-product ?x ?w))
 => (accelerator-call vta-dense ?x ?w)

(compute reduce-max (access-windows ?a (shape 2) (shape 2)))
 => (accelerator-call flex-maxpool ...)

(bias-add (dense ?x ?w) ?bias ?axis)
 => (accelerator-call flex-linear ?x ?w ?bias)

We capture accelerator semantics as program rewrites…

…and our exploratory rewrites are general-purpose rewrites over Glenside!

(cartProd (reshape ?a0 ?shape0) (reshape ?a1 ?shape1))
 => (reshape (cartProd ?a0 ?a1) ?newShape)
(compute dotProd (reshape ?a ?shape))
 => (reshape (compute dotProd ?a) ?newShape)

?a => (reshape (flatten ?a) ?shape)

?x => (relay-operator-call bias-add ?x
 (relay-operator-call zeros (shape ...)) 1)

...

87

…… …

88

……… …

89

……… … …

90

……… … …

91

……… … ………

EfficientNet MobileNet V2 ResMLP ResNet-20 Transformer

VTA 0 → 35 1 → 41 38 2 → 22 66

FlexASR 0 → 35 0 → 41 0 → 38 2 → 22 0 → 66

92

(cartProd (reshape ?a0 ?shape0) (reshape ?a1 ?shape1))
 → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd (reshape ?a ?shape))
 → (reshape (compute dotProd ?a) ?newShape)

?a → (reshape (flatten ?a) ?shape)

These rewrites rediscover the im2col
transformation, without explicitly encoding it!

93

94

What does it show about
Glenside?

94

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification.

95

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification.

95

im2col

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification.

95

im2col

Writing rewrites is simpler than
writing a mapper from scratch!

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification.

95

im2col

Writing rewrites is simpler than
writing a mapper from scratch!

Via mapping to ILA!

What I’ll show

How I’ve shown it so far

How I’ll finish

Introduction

Thesis

Glenside

Lakeroad Introduction

Lakeroad pt. 1

Lakeroad pt. 2

96

Glenside in the 3LA Project

Lakeroad

97

98

99

…… …

100

……… …

101

……… … …

102

……… … …

103

……… … ………

103

……… … ………

Accelerator calls are
predetermined; we’re

just searching for them!

103

……… … ………

Accelerator calls are
predetermined; we’re

just searching for them!

But we have all of these other
interesting equivalencies we’ve

discovered…

103

……… … ………

Accelerator calls are
predetermined; we’re

just searching for them!

But we have all of these other
interesting equivalencies we’ve

discovered…

What if we could use the
information in the egraph to tell

us which hardware to make?

103

……… … ………

Accelerator calls are
predetermined; we’re

just searching for them!

But we have all of these other
interesting equivalencies we’ve

discovered…

What if we could use the
information in the egraph to tell

us which hardware to make?

new! new!

104

Lakeroad uses similar techniques to
Glenside (i.e. equality saturation) to map

computation to custom hardware—in this
case, FPGAs.

104

Lakeroad uses similar techniques to
Glenside (i.e. equality saturation) to map

computation to custom hardware—in this
case, FPGAs.

However, Lakeroad additionally uses what
it discovers to propose entirely new

hardware primitives!
104

What are FPGAs?

105

Field Programmable Gate Array

106

Field Programmable Gate Array

106

i.e. easily reprogrammable!

Field Programmable Gate Array

106

i.e. easily reprogrammable!

filled with logic gates 
(and nowadays, much more!)

107

108

108

Programmable Logic

108

Programmable Logic
Memory

108

Programmable Logic
Memory

DSPs

109

109

i3 i2 i1 i0 o
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
… … … … …

109

i3 i2 i1 i0 o
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
… … … … …

109

i3 i2 i1 i0 o
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
… … … … …

109

i3 i2 i1 i0 o
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
… … … … …

109

i3 i2 i1 i0 o
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
… … … … …

109

i3 i2 i1 i0 o
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
… … … … …

Xilinx UltraScale+

110

Current FPGA compilers are slow
and unpredictable.

110

Lavin, Chris, and Alireza Kaviani. "RapidWright: Enabling custom crafted implementations for FPGAs." 2018 IEEE
26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2018.

“UltraScale+ devices employ DSP blocks that are rated
at 891MHz for the fastest speed grade. Nonetheless,
large designs implemented on FPGAs typically achieve
system frequencies lower than 400MHz.”

111

behavioral Verilog

gate-level representation

FPGA-level Verilog
level of abstraction

112

Recent works (Reticle!) have attempted a
more direct, software-compiler-like approach.

113

behavioral Verilog
level of abstraction

114
Callahan, Timothy J., Philip Chong, Andre DeHon, and John Wawrzynek. “Fast module mapping and placement for datapaths in FPGAs." FPGA 1998.

Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. "Reticle: a virtual machine for programming modern FPGAs." PLDI 2021.
Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz, Jack Koenig, Chris Lattner, Andrew Lenharth et al. 
"MLIR as Hardware Compiler Infrastructure." WOSET 2021.

behavioral Verilog

FPGA-level Verilog

level of abstraction

114
Callahan, Timothy J., Philip Chong, Andre DeHon, and John Wawrzynek. “Fast module mapping and placement for datapaths in FPGAs." FPGA 1998.

Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. "Reticle: a virtual machine for programming modern FPGAs." PLDI 2021.
Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz, Jack Koenig, Chris Lattner, Andrew Lenharth et al. 
"MLIR as Hardware Compiler Infrastructure." WOSET 2021.

behavioral Verilog

FPGA-level Verilog

level of abstraction
intermediate representation (IR)

…

115
Callahan, Timothy J., Philip Chong, Andre DeHon, and John Wawrzynek. “Fast module mapping and placement for datapaths in FPGAs." FPGA 1998.

Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. "Reticle: a virtual machine for programming modern FPGAs." PLDI 2021.
Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz, Jack Koenig, Chris Lattner, Andrew Lenharth et al. 
"MLIR as Hardware Compiler Infrastructure." WOSET 2021.

To implement this, we need an FPGA
“ISA”: the lowest-level IR which gets

converted to FPGA-ready Verilog.

116

behavioral Verilog

FPGA-level Verilog

level of abstraction

FPGA ISA

…

117

New FPGA compiler toolchains
specify their ISAs explicitly!

118

119

120

Reticle compiles designs to these ISA
instructions, and then those instructions
get converted to FPGA-specific Verilog.

121

122

But how do we choose the ISA?

122

But how do we choose the ISA?
And how do we implement it?

122

But how do we choose the ISA?
And how do we implement it?

Currently: by hand!

122

123

Choosing ISAs by hand may
leave gaps in the ISA.

123

124Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs." 
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.

A key optimization for FPGAs: packing or fusing LUTs!

124Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs." 
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.

A key optimization for FPGAs: packing or fusing LUTs!

If A and C can fit in a single LUT…

124Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs." 
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.

A key optimization for FPGAs: packing or fusing LUTs!

If A and C can fit in a single LUT… …combine them!

124Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs." 
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.

A key optimization for FPGAs: packing or fusing LUTs!

If A and C can fit in a single LUT… …combine them!

This requires us to have A,C in our ISA.

124Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs." 
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.

A key optimization for FPGAs: packing or fusing LUTs!

If A and C can fit in a single LUT… …combine them!

This requires us to have A,C in our ISA.
Do we also need A,B? Or B,C?

124Taneem Ahmed, Paul D. Kundarewich, and Jason H. Anderson. "Packing techniques for virtex-5 FPGAs." 
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2.3 (2009): 1-24.

A key optimization for FPGAs: packing or fusing LUTs!

If A and C can fit in a single LUT… …combine them!

This requires us to have A,C in our ISA.
Do we also need A,B? Or B,C?

Think of all the possible combinations we will have to consider!

Choosing ISA by hand will miss
many fused instructions.

125

126

What about implementing ISAs?

126

Implementing ISAs by hand is
infeasible for large ISAs—and a

great source of bugs!

127

8-bit add ISA instruction:

pat add_i8(a:i8, b:i8) -> (y:i8) {
 y:i8 = add(a, b) @lut;
}

128

8-bit add ISA instruction:

pat add_i8(a:i8, b:i8) -> (y:i8) {
 y:i8 = add(a, b) @lut;
}

Xilinx 7-series implementation of 8-bit add:

imp add_i8[1, 2](a:i8, b:i8) -> (y:i8) {
 t0:bool = ext[0](a);
 t1:bool = ext[1](a);
 t2:bool = ext[2](a);
 t3:bool = ext[3](a);
 t4:bool = ext[4](a);
 t5:bool = ext[5](a);
 t6:bool = ext[6](a);
 t7:bool = ext[7](a);
 t8:bool = ext[0](b);
 t9:bool = ext[1](b);
 t10:bool = ext[2](b);
 t11:bool = ext[3](b);
 t12:bool = ext[4](b);
 t13:bool = ext[5](b);
 t14:bool = ext[6](b);
 t15:bool = ext[7](b);
 t16:bool = lut2[6](t0, t8) @a6(??, ??);
 t17:bool = lut2[6](t1, t9) @b6(??, ??);
 t18:bool = lut2[6](t2, t10) @c6(??, ??);
 t19:bool = lut2[6](t3, t11) @d6(??, ??);
 t20:bool = lut2[6](t4, t12) @e6(??, ??);
 t21:bool = lut2[6](t5, t13) @f6(??, ??);
 t22:bool = lut2[6](t6, t14) @g6(??, ??);
 t23:bool = lut2[6](t7, t15) @h6(??, ??);
 t24:i8 = cat(t16, t17, t18, t19, t20, t21, t22, t23);
 y:i8 = carryadd(a, t24) @c8(??, ??);
} 128

8-bit add ISA instruction:

pat add_i8(a:i8, b:i8) -> (y:i8) {
 y:i8 = add(a, b) @lut;
}

Xilinx 7-series implementation of 8-bit add:

imp add_i8[1, 2](a:i8, b:i8) -> (y:i8) {
 t0:bool = ext[0](a);
 t1:bool = ext[1](a);
 t2:bool = ext[2](a);
 t3:bool = ext[3](a);
 t4:bool = ext[4](a);
 t5:bool = ext[5](a);
 t6:bool = ext[6](a);
 t7:bool = ext[7](a);
 t8:bool = ext[0](b);
 t9:bool = ext[1](b);
 t10:bool = ext[2](b);
 t11:bool = ext[3](b);
 t12:bool = ext[4](b);
 t13:bool = ext[5](b);
 t14:bool = ext[6](b);
 t15:bool = ext[7](b);
 t16:bool = lut2[6](t0, t8) @a6(??, ??);
 t17:bool = lut2[6](t1, t9) @b6(??, ??);
 t18:bool = lut2[6](t2, t10) @c6(??, ??);
 t19:bool = lut2[6](t3, t11) @d6(??, ??);
 t20:bool = lut2[6](t4, t12) @e6(??, ??);
 t21:bool = lut2[6](t5, t13) @f6(??, ??);
 t22:bool = lut2[6](t6, t14) @g6(??, ??);
 t23:bool = lut2[6](t7, t15) @h6(??, ??);
 t24:i8 = cat(t16, t17, t18, t19, t20, t21, t22, t23);
 y:i8 = carryadd(a, t24) @c8(??, ??);
}

Luis wrote all of these
implementations by hand for Reticle!

128

This is slow, especially if we have multiple
backends and many fused instructions!

129

So, can we do it automatically?

130

We introduce Lakeroad, a tool for
automatically defining and implementing

ISAs for FPGAs.

131

132

hardware
designs

ISA Exploration

ISA Implementation Synthesis

ISA Explorer ISA

ISA ISA Implementation Synthesizer ISA
Implementation

133

hardware
designs

ISA Exploration

ISA Implementation Synthesis

ISA Explorer ISA

ISA ISA Implementation Synthesizer ISA
Implementation

Core idea of ISA exploration:
define the ISA from instructions

found in real designs.

134

135

hardware
designs

ISA Exploration

ISA Implementation Synthesis

ISA Explorer ISA

ISA ISA Implementation Synthesizer ISA
Implementation

136

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA ISA Implementation Synthesizer ISA
Implementation

Instruction
Filter

Potential
Instructions

137

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA ISA Implementation Synthesizer ISA
Implementation

Instruction
Filter

Potential
Instructions

A simple example: enumerate the
instructions present in

not (a and b)

138

139

not (a and b)

not

and

a b

Naive approach: instructions are
just the subexpressions!

140

141

not (a and b)

a b

not

and

a b

and

142

not (i0 and i1) i0 and i1

i0 i1

not

and
i0 i1

and

But we missed one!

143

144

not (i0 and i1) i0 and i1

i0 i1

not

and
i0 i1

and

145

not i0

not

i0

not (i0 and i1) i0 and i1

i0 i1

not

and
i0 i1

and

So how do we capture all instructions?

146

So how do we capture all instructions?
With rewrites!

146

147

not

and

a b

To convert a node into an instruction,
decide which of its children to convert to arguments.

148

not

and

a b

To convert a node into an instruction,
decide which of its children to convert to arguments.

149

not

and

a b

To convert a node into an instruction,
decide which of its children to convert to arguments.

and

i0 i1

150

not

and

a b

and

i0 i1

To convert a node into an instruction,
decide which of its children to convert to arguments.

151

not

and

a b

not

and and

i0 i1

To convert a node into an instruction,
decide which of its children to convert to arguments.

i0 i1

152

not

and

a b

not

and

not

and

i0 i1

To convert a node into an instruction,
decide which of its children to convert to arguments.

i0 i1

i0

153

(binop ?op ?bw (apply (instr ?ast0 ?canonical-args0) ?args0) (apply (instr ?ast1 ?canonical-args1) ?args1))
 => (apply (instr (binop-ast ?op ?bw ?ast0 ?ast1) (canonicalize (concat ?args0 ?args1)))
 (concat ?args0 ?args1))

(binop ?op ?bw ?left (apply (instr ?ast1 ?canonical-args1) ?args1))
 => (apply (instr (binop-ast ?op ?bw (hole ?bw) ?ast1) (canonicalize (concat (list ?left) ?args1)))
 (concat (list ?left) ?args1))

(binop ?op ?bw (apply (instr ?ast0 ?canonical-args0) ?args0) ?right)
 => (apply (instr (binop-ast ?op ?bw ?ast0 (hole ?bw)) (canonicalize (concat ?args0 (list ?right))))
 (concat ?args0 (list ?right)))

(binop ?op ?bw ?a ?b)
 => (apply (instr (binop-ast ?op ?bw (hole ?bw) (hole ?bw)) (canonicalize (list ?a ?b)))
 (list ?a ?b))

This can be encoded as a small set of rewrites in egg!

154

not

and

a b

155

not

and

a b

apply

(i0 and i1) [a, b]

156

not

and

a b

apply

(i0 and i1) [a, b]

apply

(not i0)
[(a and b)]

157

not

and

a b

apply

(i0 and i1) [a, b]

apply

(not i0)
[(a and b)]

apply

(not (i0 and i1))
[a, b]

158

not

and

a b

apply

(i0 and i1) [a, b]

apply

(not i0)
[(a and b)]

apply

(not (i0 and i1))
[a, b]

We can even apply other rewrites
simultaneously!

159

160

not (a and b) ==> (not a) or (not b)

De Morgan’s law

161

not

and

a b

…

…

162

not

and

a b

…

… or

not not

163

not

and

a b

…

… or

not not

apply

(i0 or i1)

[(not a), (not b)]

164

i0 or i1

i0 and i1

not i0
not (i0 and i1)Our potential

instructions!

165

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA ISA Implementation Synthesizer ISA
Implementation

Instruction
Filter

Potential
Instructions

166

i0 or i1

i0 and i1

not i0
not (i0 and i1)

167

i0 or i1

i0 and i1

not i0
not (i0 and i1) Too specialized—filter it out!

168

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA ISA Implementation Synthesizer ISA
Implementation

Instruction
Filter

Potential
Instructions

169

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA Rosette ISA
Implementation

Instruction
Filter

Potential
Instructions

High-Level
Instruction
Semantics

Low-Level
Hardware
Semantics

170

Rosette is a synthesis tool which allows us to ask:

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software, pp. 135-152. 2013.

170

For all inputs a and b,

Rosette is a synthesis tool which allows us to ask:

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software, pp. 135-152. 2013.

170

For all inputs a and b,
find an implementation of low-level-FPGA-impl such that

Rosette is a synthesis tool which allows us to ask:

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software, pp. 135-152. 2013.

170

For all inputs a and b,
find an implementation of low-level-FPGA-impl such that
 low-level-FPGA-impl(a, b) == high-level-instr-impl(a, b)

Rosette is a synthesis tool which allows us to ask:

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software, pp. 135-152. 2013.

170

For all inputs a and b,
find an implementation of low-level-FPGA-impl such that
 low-level-FPGA-impl(a, b) == high-level-instr-impl(a, b)

Rosette is a synthesis tool which allows us to ask:

To do so, we need to define the high-level semantics of the instruction,

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software, pp. 135-152. 2013.

170

For all inputs a and b,
find an implementation of low-level-FPGA-impl such that
 low-level-FPGA-impl(a, b) == high-level-instr-impl(a, b)

Rosette is a synthesis tool which allows us to ask:

To do so, we need to define the high-level semantics of the instruction,
and the low-level semantics of the FPGA.

Emina Torlak, and Rastislav Bodik. "Growing solver-aided languages with Rosette." In Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software, pp. 135-152. 2013.

171

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA Rosette ISA
Implementation

Instruction
Filter

Potential
Instructions

High-Level
Instruction
Semantics

Low-Level
Hardware
Semantics

172

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA Rosette ISA
Implementation

Instruction
Filter

Potential
Instructions

High-Level
Instruction
Semantics

Low-Level
Hardware
Semantics

173

174

i0 or i1

i0 and i1

not i0
not (i0 and i1)

175

(bvor i0 i1)

(bvand i0 i1)

(bvnot i0)
(bvnot (bvand i0 i1))

i0 or i1

i0 and i1

not i0
not (i0 and i1)

176

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA Rosette ISA
Implementation

Instruction
Filter

Potential
Instructions

High-Level
Instruction
Semantics

Low-Level
Hardware
Semantics

To capture architecture-level semantics of
FPGAs, we simply build an interpreter for

each FPGA component!

177

178

178

(define (lut memory inputs)
 (let* ([inputs (zero-extend inputs (bitvector (length (bitvector->bits memory))))])
 (extract 0 0 (bvlshr memory inputs))))

178

(define (lut memory inputs)
 (let* ([inputs (zero-extend inputs (bitvector (length (bitvector->bits memory))))])
 (extract 0 0 (bvlshr memory inputs))))

(define (ultrascale-plus—lut6-2 memory inputs)
 (let* ([lut5-0 (lut (extract 63 32 memory) (extract 4 0 inputs))]
 [lut5-1 (lut (extract 31 0 memory) (extract 4 0 inputs))]
 [O6 (if (bitvector->bool (bit 5 inputs)) lut5-0 lut5-1)]
 [O5 lut5-1])
 (list O5 O6)))

179

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA Rosette ISA
Implementation

Instruction
Filter

Potential
Instructions

High-Level
Instruction
Semantics

Low-Level
Hardware
Semantics

180

i0 or i1

i0 and i1

not i0
not (i0 and i1)

181

For all inputs a and b,

find an implementation of low-level-and-impl such that

 low-level-and-impl(a,b) == high-level-and-impl(a,b)

182

For all inputs a and b,

find an implementation of low-level-and-impl such that

 low-level-and-impl(a,b) == (bvand a b)

183

For all inputs a and b,

find a setting of memory such that

 (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)

184

For all inputs a and b,

find a setting of memory such that

 (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)

184

For all inputs a and b,

find a setting of memory such that

 (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)

184

memory:
 (bv #x0000000000000008 64)

For all inputs a and b,

find a setting of memory such that

 (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)

185

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA Rosette ISA
Implementation

Instruction
Filter

Potential
Instructions

High-Level
Instruction
Semantics

Low-Level
Hardware
Semantics

186

memory:
 (bv #x0000000000000008 64)

For all inputs a and b,

find a setting of memory such that

 (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)

186

memory:
 (bv #x0000000000000008 64)

module and(a, b, out);
 LUT2 #(
 .INIT(4'h8)
) _0_ (.I0(a), .I1(b), .O(out));
endmodule

For all inputs a and b,

find a setting of memory such that

 (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)

186

memory:
 (bv #x0000000000000008 64)

module and(a, b, out);
 LUT2 #(
 .INIT(4'h8)
) _0_ (.I0(a), .I1(b), .O(out));
endmodule

For all inputs a and b,

find a setting of memory such that

 (ultrascale-plus—lut6-2 memory (list a b)) == (bvand a b)

To support new FPGA architectures…

187

To support new FPGA architectures…
…just provide an interpreter!

187

188

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA Rosette ISA
Implementation

Instruction
Filter

Potential
Instructions

High-Level
Instruction
Semantics

Low-Level
Hardware
Semantics

189

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA Rosette

Instruction
Filter

Potential
Instructions

High-Level
Instruction
Semantics

Xilinx
UltraScale+
interpreter

UltraScale+ ISA
Implementation

190

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA Rosette

Instruction
Filter

Potential
Instructions

High-Level
Instruction
Semantics

Xilinx
UltraScale+
interpreter

UltraScale+ ISA
Implementation

ECP5 ISA
Implementation

Lattice ECP5
interpreter

191

Finally, to compile a new design, we just need to:

191

Finally, to compile a new design, we just need to:

1. Insert it into the egraph

191

Finally, to compile a new design, we just need to:

1. Insert it into the egraph

2. Enumerate its instructions via rewrites

191

Finally, to compile a new design, we just need to:

1. Insert it into the egraph

2. Enumerate its instructions via rewrites

3. Extract an implementation composed of instructions in our ISA

191

Finally, to compile a new design, we just need to:

1. Insert it into the egraph

2. Enumerate its instructions via rewrites

3. Extract an implementation composed of instructions in our ISA

4. Output Verilog

191

Finally, to compile a new design, we just need to:

1. Insert it into the egraph

2. Enumerate its instructions via rewrites

3. Extract an implementation composed of instructions in our ISA

4. Output Verilog

If the design isn’t covered with the current ISA, we can:

191

Finally, to compile a new design, we just need to:

1. Insert it into the egraph

2. Enumerate its instructions via rewrites

3. Extract an implementation composed of instructions in our ISA

4. Output Verilog

If the design isn’t covered with the current ISA, we can:

• Run rewrites to find alternative implementations of the design

191

Finally, to compile a new design, we just need to:

1. Insert it into the egraph

2. Enumerate its instructions via rewrites

3. Extract an implementation composed of instructions in our ISA

4. Output Verilog

If the design isn’t covered with the current ISA, we can:

• Run rewrites to find alternative implementations of the design

• Find a minimal set of new instructions to add to the ISA

191

192

hardware
designs

ISA Exploration

ISA Implementation Synthesis

Instruction
Enumerator ISA

ISA Rosette ISA
Implementation

Instruction
Filter

Potential
Instructions

High-Level
Instruction
Semantics

Low-Level
Hardware
Semantics

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification.

193

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification.

193

Complex optimizations emerge
from small logic rewrites

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification.

193

Complex optimizations emerge
from small logic rewrites

It’s automatic!

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification.

193

Complex optimizations emerge
from small logic rewrites

It’s automatic!

ISA implementations found by
Rosette are correct by construction

Proposed Evaluation

194

Proposed Evaluation

195

Proposed Evaluation
Paper 1: ISA Implementation Synthesis

195

Proposed Evaluation
Paper 1: ISA Implementation Synthesis

• Goal: Evaluate the quality of synthesized implementations; demonstrate ability
to support new FPGAs.

195

Proposed Evaluation
Paper 1: ISA Implementation Synthesis

• Goal: Evaluate the quality of synthesized implementations; demonstrate ability
to support new FPGAs.

• We will synthesize three ISAs (Reticle, Calyx, MLIR Comb) for three FPGAs
(UltraScale+, ECP5, SOFA)

195

Proposed Evaluation
Paper 1: ISA Implementation Synthesis

• Goal: Evaluate the quality of synthesized implementations; demonstrate ability
to support new FPGAs.

• We will synthesize three ISAs (Reticle, Calyx, MLIR Comb) for three FPGAs
(UltraScale+, ECP5, SOFA)

Paper 2: ISA Exploration and Lakeroad End-to-End

195

Proposed Evaluation
Paper 1: ISA Implementation Synthesis

• Goal: Evaluate the quality of synthesized implementations; demonstrate ability
to support new FPGAs.

• We will synthesize three ISAs (Reticle, Calyx, MLIR Comb) for three FPGAs
(UltraScale+, ECP5, SOFA)

Paper 2: ISA Exploration and Lakeroad End-to-End

• Goal: Demonstrate ability to enumerate a large space of interesting
instructions; demonstrate fast compilation using the egraph.

195

Proposed Evaluation
Paper 1: ISA Implementation Synthesis

• Goal: Evaluate the quality of synthesized implementations; demonstrate ability
to support new FPGAs.

• We will synthesize three ISAs (Reticle, Calyx, MLIR Comb) for three FPGAs
(UltraScale+, ECP5, SOFA)

Paper 2: ISA Exploration and Lakeroad End-to-End

• Goal: Demonstrate ability to enumerate a large space of interesting
instructions; demonstrate fast compilation using the egraph.

• We will run Lakeroad end-to-end on a large corpus of hardware benchmarks
(from sources like MachSuite)

195

In Closing

196

Automatically generating compiler backends
from explicit, formal hardware models

• gives rise to emergent optimizations,
• reduces development time, and
• enables verification.

197

So far, I have provided evidence for this thesis
through Glenside and its application in 3LA.

198

So far, I have provided evidence for this thesis
through Glenside and its application in 3LA.
I plan to demonstrate this thesis once more

through Lakeroad.

198

199

June 2022: Submit Lakeroad part 2 to 2nd round of ASPLOS

199

June 2022: Submit Lakeroad part 2 to 2nd round of ASPLOS

June 2022: Resubmit 3LA paper to 2nd round of ASPLOS

199

June 2022: Submit Lakeroad part 2 to 2nd round of ASPLOS

June 2022: Resubmit 3LA paper to 2nd round of ASPLOS

October 2022: Submit Lakeroad part 1 to 3rd round of ASPLOS

199

June 2022: Submit Lakeroad part 2 to 2nd round of ASPLOS

June 2022: Resubmit 3LA paper to 2nd round of ASPLOS

October 2022: Submit Lakeroad part 1 to 3rd round of ASPLOS

Autumn Quarter 2022: Submit 3LA verification paper

199

June 2022: Submit Lakeroad part 2 to 2nd round of ASPLOS

June 2022: Resubmit 3LA paper to 2nd round of ASPLOS

October 2022: Submit Lakeroad part 1 to 3rd round of ASPLOS

Autumn Quarter 2022: Submit 3LA verification paper

Winter Quarter 2023: Fulfill final TA requirement

199

June 2022: Submit Lakeroad part 2 to 2nd round of ASPLOS

June 2022: Resubmit 3LA paper to 2nd round of ASPLOS

October 2022: Submit Lakeroad part 1 to 3rd round of ASPLOS

Autumn Quarter 2022: Submit 3LA verification paper

Winter Quarter 2023: Fulfill final TA requirement

Winter/Spring Quarter 2023: Deal with Lakeroad and 3LA resubmissions

199

June 2022: Submit Lakeroad part 2 to 2nd round of ASPLOS

June 2022: Resubmit 3LA paper to 2nd round of ASPLOS

October 2022: Submit Lakeroad part 1 to 3rd round of ASPLOS

Autumn Quarter 2022: Submit 3LA verification paper

Winter Quarter 2023: Fulfill final TA requirement

Winter/Spring Quarter 2023: Deal with Lakeroad and 3LA resubmissions

Spring Quarter 2023: Write thesis and defend

199

Acknowledgements

200

201

202

203

204

Thank you!

205

Extra Slides

206

Rest of Glenside Talk

207

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies

• Reimplementing Matrix Multiplication with Access Patterns

• Implementing 2D Convolution with Access Patterns

• Hardware Mapping as Program Rewriting

• Flexible Hardware Mapping with Equality Saturation

208

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies

• Reimplementing Matrix Multiplication with Access Patterns

• Implementing 2D Convolution with Access Patterns

• Hardware Mapping as Program Rewriting

• Flexible Hardware Mapping with Equality Saturation

209

Given matrices A and B, pair each row of A with
each column of B, compute their dot products,

and arrange the results back into a matrix.

210

 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((3), (4))

211

 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((3), (4))
Access A as a list of its rows

211

 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))

; ((3), (4))

212

 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))

; ((3), (4))

213

 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))

; ((3), (4))
Access B as a list
of its rows, then
transpose into a

list of its columns

213

 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))
; ((3, 2), (2, 4))

214

 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))
; ((3, 2), (2, 4))

Create every row–column pair

214

 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))
; ((3, 2), (2, 4))
; ((3, 2), ())

215

 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))
; ((3, 2), (2, 4))
; ((3, 2), ())

Compute dot product of every row–column pair

215

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies

• Reimplementing Matrix Multiplication with Access Patterns

• Implementing 2D Convolution with Access Patterns

• Hardware Mapping as Program Rewriting

• Flexible Hardware Mapping with Equality Saturation

216

[

[

Inputs: a batch of image/activation tensors
and a list of weight/filter tensors

[

[

217

218

Filter and region of image are
elementwise multiplied and the

results are summed

219

Filter and region of image are
elementwise multiplied and the

results are summed

219

220

221

222

[
[

One output channel for each input filter

223

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

Access weights as a list of 3D filters

224

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

Access activations as a batch of 3D images

; ((N), (C, H, W))

225

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

Form windows over input images

; ((N), (C, H, W))

226

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

These parameters control
window shape and strides

; ((N), (C, H, W))

227

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S
At each location in each new image,
there is a (C, Kh, Kw)-shaped window

; ((N), (C, H, W))

; ((N, 1, H’, W’), (C, Kh, Kw))

228

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

Pair windows with filters

; ((N), (C, H, W))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((N, 1, H’, W’, O), (2, C, Kh, Kw))

229

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

SCompute dot product of each window–filter pair

; ((N), (C, H, W))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((N, 1, H’, W’, O), (2, C, Kh, Kw))

; ((N, 1, H’, W’, O), ())

230

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

Remove and rearrange dimensions

; ((N), (C, H, W))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((N, 1, H’, W’, O), (2, C, Kh, Kw))

; ((N, 1, H’, W’, O), ())

; ((N, O, H’, W’), ())

231

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies

• Reimplementing Matrix Multiplication with Access Patterns

• Implementing 2D Convolution with Access Patterns

• Hardware Mapping as Program Rewriting

• Flexible Hardware Mapping with Equality Saturation

232

It reads an entire weight
array of shape rows by cols.

It then pushes n vectors of
length rows through the array.

It computes the dot product
of every vector with every
column of the weights.

Finally, it writes out n
vectors of length cols.

233

233

Can we represent hardware
as a searchable pattern?

233

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows)) With Glenside, we can!

234

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

(systolicArray ?rows ?cols ?a0 ?a1)
We can directly rewrite to hardware invocations!

235

(compute dotProd

 (cartProd

 (access A 1)

 (transpose

 (access B 1)

 (list 1 0))))

 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

(systolicArray ?rows ?cols ?a0 ?a1)

236

(compute dotProd

 (cartProd

 (access A 1)

 (transpose

 (access B 1)

 (list 1 0))))

 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

(systolicArray ?rows ?cols ?a0 ?a1)

237

(systolicArray

 4 2

 (access A 1)

 (transpose

 (access B 1)

 (list 1 0))))

 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

(systolicArray ?rows ?cols ?a0 ?a1)

238

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies

• Reimplementing Matrix Multiplication with Access Patterns

• Implementing 2D Convolution with Access Patterns

• Hardware Mapping as Program Rewriting

• Flexible Hardware Mapping with Equality Saturation

239

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd

 (cartProd

 (access A 1)

 (transpose

 (access B 1)

 (list 1 0))))

240

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd

 (cartProd

 (access A 1)

 (transpose

 (access B 1)

 (list 1 0))))

A 3-length vector of 4-
length vectors

Convolution and matrix
multiplication have

similar structure!

241

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

Can we apply our hardware rewrite?

242

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows)) ; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))
Our access pattern shapes do not

pass the rewrite’s conditions

243

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows)) ; ((?n), (?rows))

; ((?cols), (?rows))

Can we flatten our access patterns?

244

?a → (reshape (flatten ?a) ?shape)

Flattens and immediately reshapes an access pattern

245

?a → (reshape (flatten ?a) ?shape)

Flattens and immediately reshapes an access pattern

245

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

246

 (reshape (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))) ?shape0)

 (reshape (flatten (access weights 1)) ?shape1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

247

 (reshape (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))) ?shape0)

 (reshape (flatten (access weights 1)) ?shape1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

But our access pattern shapes haven’t changed!

247

 (reshape (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))) ?shape0)

 (reshape (flatten (access weights 1)) ?shape1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

We need to “bubble” the reshapes to the top

248

(cartProd
 (reshape ?a0 ?shape0)
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd
 (reshape ?a ?shape)) → (reshape (compute dotProd ?a) ?newShape)

These rewrites “bubble” reshape through cartProd and compute dotProd

249

 (reshape (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))) ?shape0)

 (reshape (flatten (access weights 1)) ?shape1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

250

 (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw)))

 (flatten (access weights 1)))) ?shape)

 1)

 (list 0 3 1 2))

; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

reshapes have been moved out, and the access patterns are flattened!

251

 (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw)))

 (flatten (access weights 1)))) ?shape)

 1)

 (list 0 3 1 2))

; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

Our rewrite can now map
convolution to matrix

multiplication hardware!

252

(cartProd
 (reshape ?a0 ?shape0)
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd
 (reshape ?a ?shape)) → (reshape (compute dotProd ?a) ?newShape)

?a → (reshape (flatten ?a) ?shape)

These rewrites rediscover the im2col transformation!

253

254

In conclusion,

254

In conclusion,

we have presented access patterns as a new tensor representation,

254

In conclusion,

we have presented access patterns as a new tensor representation,

we have used them to build the pure, low-level, binder free IR Glenside,

254

In conclusion,

we have presented access patterns as a new tensor representation,

we have used them to build the pure, low-level, binder free IR Glenside,

and have shown how they enable hardware-level tensor program rewriting.

254

https://github.com/gussmith23/glenside
Glenside is an actively maintained Rust library!

Try it out and open issues if you have questions!

255

https://github.com/gussmith23/glenside

256

Thank you!

257

