Generate Compilers from
Hardware Models!

Gus Smith, PhD Candidate, University of Washington ' Eﬁtﬂj\?
PLARCH 2023 ‘ ‘ SCHOOL

Hi everybody. My name is Gus Smith, and I’'m a PhD candidate at the University of Washington’s PLSE lab. Today I’m going to be talking about why we should generate
compilers from hardware models.

A

Ben Kushigian Vishal Canumalla Andrew Cheung René Just Zachary Tatlock

First, let me shout out my coauthors in PLSE: Ben, Vishal, Andrew, Rene, and Zach, some of whom are in the audience today!

The Hardware Lottery

Sara Hooker

Google Research, Brain Team

shooker@google. com -

In 2020, Sara Hooker from Google Research released a paper titled the Hardware Lottery. The thesis of this paper is that
[build] ...

She argues that, for example, the current track of matrix-multiplication-based advances in machine learning are undeniably linked to the abundance of hardware for
matrix multiplication, and that other research directions in machine learning are subsequently less likely to be successful.

The hardware lottery is a direct challenge to us in this room. By my reading, the takeaway for our community is that
[build] new platforms (that is, new hardware and their associated compiler stack) should be easier to build, so that the best ideas win — not just the ideas with hardware
on their side!

In this talk, I’'m going to focus on what | know:
[build] compilers.

So, let’s ask the question,

[build] why are compilers so difficult

The Hardware Lottery

Sara Hooker

Google Research, Brain Team

shooker@google. com -

Hardware and compilers have a disproportionate role in
deciding which research ideas succeed or falil.

The Hardware Lottery

Sara Hooker

Google Research, Brain Team

shooker@google. com -

Hardware and compilers have a disproportionate role in
deciding which research ideas succeed or falil.

Takeaway for our community: new platforms (hardware
+ compiler stack) should be easier to build, so that the
best ideas win!

The Hardware Lottery

Sara Hooker

Google Research, Brain Team

shooker@google. com -

Hardware and compilers have a disproportionate role in
deciding which research ideas succeed or falil.

Takeaway for our community: new platforms (hardware
+ lcompiler stack) should be easier to build, so that the
best ideas win!

The Hardware Lottery

Sara Hooker

Google Research, Brain Team

shooker@google. com -

Hardware and compilers have a disproportionate role in
deciding which research ideas succeed or falil.

Takeaway for our community: new platforms (hardware
+ lcompiler stack) should be easier to build, so that the

best ideas win!

Why are compilers hard to build?

Imagine we have

[build] a hardware engineer who

[build] builds a new hardware design. If she wants to run

[build] programs on her hardware, she’ll need a

[build] compiler that

[build] compiles programs to run on her design. This requires

[build] a compiler engineer, who, with much time and effort

[build] builds a compiler, whose design is informed not only by

[build] the hardware design itself, but also by

[build] communications with the hardware designer,

[build] any documentation that exists for the design, and finally, by

[build] the compiler engineer’s own internal model of how the hardware works. If that’s not confusing enough, if the team wants to ensure the compiler is correct, they’ll
hire

[build] a verification engineer to

[build] build a

[build] formal verification model, which

[build] models the hardware and

[build] verifies that the compiler is correct. Similarly to the compiler, the design of the verification model is informed by
[build] communications with the hardware designer,

[build] the hardware design itself,

[build] the documentation, and

[build] the verification engineer’s own ideas about how the hardware works.
[build] If this is looking a little complicated, well, | agree!

But the process of building a compiler is more than just confusing; it also
[build] requires significant developer effort,

Why are compilers hard to build?

builds

Hardware

Design

Why are compilers hard to build?

builds

%%

Programs

Hardware

Design

Why are compilers hard to build?

Why are compilers hard to build?

%%

Programs

Compiler

builds Hardware
Design

Why are compilers hard to build?

%%
Programs

compiled
by

Compiler

ontol

builds Hardware

Design

Why are compilers hard to build?

%%
Programs

compiled
by

Compiler

ontol

builds Hardware

Design

Why are compilers hard to build?

%%

Programs
compiled
by
Compiler [EFEEICE

onto

builds Hardware

Design

builds

%%

Programs

compiled
b

Omol T\nforms

Hardware

Design

y l
‘m

Why are compilers hard to build?

builds

Why are compilers hard to build?

%%

Programs

compiled
b

y l
‘m

Omol T\nforms

Hardware
Design

builds

Why are compilers hard to build?

A

% %
é\@
X\
i\\o

Programs RS

compiled
b

y l
‘m

Omol T\nforms

Hardware
Design

builds

Why are compilers hard to build?

A

Docs

%é
<

O S
Programs & o

compi\edl O

by

Compiler [l

Omol T\nforms

Hardware
Design

builds

Why are compilers hard to build?

A

Docs

%é
<

O S
Programs & o

compi\edl O

by

Compiler [l

Omol T\nforms

Hardware
Design

Why are compilers hard to build?

A

Docs

%é
<

O S
builds Programs & o

compi\edl O

by

Compiler [l

Omol T\nforms

builds Hardware
Design

Why are compilers hard to build?

A

Docs
%%
o*é@ S
builds Formal Programs &/ o<
Verification O
Model compiled
ode by

Compiler [l

Omol T\nforms

builds Hardware
Design

Why are compilers hard to build?

A

Docs
%%
o*é@ S
builds Formal Programs &/ o<
Verification O
Model compiled
ode by
Compiler [EFEEICE
/%O
%
A
©®
Omol T\nforms
builds Hardware

Design

Why are compilers hard to build?

A

Docs
%%
d§@ S
builds Formal Programs &/ o<
Verification O
Model compiled
ode by

~

verifies

Compiler [l

0”1?1' 1nnfonns

builds Hardware
Design

Why are compilers hard to build?

A

Docs
%%
o*é@ S
builds Formal Programs &/ o<
Verification O
Model compiled
= ~
verifies

Compiler [l

Omol T\nforms

builds Hardware
Design

talks with

Why are compilers hard to build?

A

Docs
%%
o*é@ S
builds Formal Programs &/ o<
Verification O
Model compiled
e ~
verifies

Compiler [EFEEICE
talks with Omol T‘”fOVmS
builds Hardware
—_—

Design

Why are compilers hard to build?

builds Formal Programs
Verification O
Model compiled
e ~
verifies

Compiler [EFEEICE
talks with Omol T‘”fOVmS
builds Hardware
—_—

Design

Why are compilers hard to build?

o)

builds Formal Programs
Verification O
Model compiled
e ~
verifies

Compiler [EFEEICE
talks with Omol T‘”fOVmS
builds Hardware
—_—

Design

Why are compilers hard to build?

o)

builds Formal Programs
Verification l

compiled
Model by

verifies

Compiler [EFEEICE
talks with Omol T‘”fOVmS
builds Hardware
—_—

Design

builds

n, %
(&7
N

Formal

Verification
Model

~

verifies

builds

S
.\(\xo‘“’\

%%
Programs

compiled
by

Compiler

Omol T\nforms

Hardware
Design

S

Why are compilers hard to build?

A
Docs

'\(\’QO‘«\‘5 O‘

2
o“é\
$

builds

Why are compilers hard to build?
A

gcc: 1000s of contributors over 35+ years
Yosys: 200+ contributors over 10+ years

TVM: 800+ contributors over 7 years

a0
B >

Which is clear once we see the sheer number of individual contributors and time that have gone into major open source compilers like gcc, the hardware synthesis tool
Yosys, and the deep learning compiler TVM.

Furthermore, building a compiler is a
[build] bug-prone process. In fact,

builds
—_—

talks with

Formal

Verification
Model

~

verifies

S
'\(\&Om\

Compiler

Omol T\nforms

% %
o‘é@ S
Programs & o
compiled
by

Why are compilers hard to build?

A
B

Docs

&kﬁ

builds

talks with

%

i

Formal

Verification
Model

~

verifies

builds
e

S
.\(\xo‘“’\

%%
Programs

compiled
by

Hardware
Design

Why are compilers hard to build?

2
o‘é\ S
\é\ -\(\xo‘“\ O

\ builds
—

Why are compilers hard to build?

You can build a strong research career centered on finding and fixing bugs in these large, open-source compilers.

hy are compilers hard to build?

Finding and Understanding Bugs in C Compilers

Finds bugs

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing In gcc
{jxyang, chenyang, eeide, regehr }@cs.utah.edu
(Csmith)

Finding and Understanding Bugs in FPGA Synthesis Tools

Fin
Yann Herklotz John Wickerson . ds buQS
yann herklotz15@imperialac.uk jwickerson@1mperial.acuk in Yosys
Imperial College London Imperial College London
(Verismith) London, UK London, UK

A Comprehensive Study of Deep Learning Compiler Bugs

Qingchao Shen Haoyang Ma Junjie Chen*
College of Intelligence and College of Intelligence and College of Intelligence and Finds bUgS
Computing, Tianjin University Computing, Tianjin University Computing, Tianjin University R
School of New Media and China China inTVM
Communication, Tianjin University haoyang_9804@tju.edu.cn junjiechen@tju.edu.cn
China
qingchao@tju.edu.cn (etal)

| —

Why are compilers hard to build?

S
.\(\xo‘“’\

,
9
Formal \0‘@ «®
builds oo Programs A
_— Verification O

compiled
Model - by l
talks with

verifies

And to make matters worse, these costs are multiplicative. That is,

Why are compilers hard to build?

...for each new piece of hardware,
[build] the entire process needs to be repeated to build a new compiler. Though there exists compiler frameworks such as LLVM and MLIR which lessen the burden on
compiler engineers, the process still requires significant effort and expertise.

Why are compilers hard to build?

Why are compilers hard to build?

So we asked the question ...

What we’ve seen is that
[build] ...

And, importantly,

[build] ...

A natural question after all of this is
[build] ...
It might sound optimistic given how much effort it is to build a compiler, but let’s at least entertain the possibility.

Why are compilers hard to build?

Building a compiler requires significant
engineering effort and induces numerous bugs.

Why are compilers hard to build?

Building a compiler requires significant
engineering effort and induces numerous bugs.

Those costs are multiplied with every new
hardware design.

Why are compilers hard to build?

Building a compiler requires significant
engineering effort and induces numerous bugs.

Those costs are multiplied with every new
hardware design.

What if compilers were synthesized?
(i.e., automatically generated?)

Why are compilers hard to build?
What if compilers were synthesized?

In the ideal case, our

[build] hardware designer still builds their hardware design. But now, that design is read by
[build] a compiler generator, which

[build] generates a compiler directly from their hardware implementation.

Automating compiler construction would save an immense amount of

[build] engineering effort and time.

In addition, depending on how the compiler generator is built, the generator could

[build] verify the compiler as it’s being generated, producing

[build] a bug-free compiler, saving verification time and effort as well.

builds

Hardware

Design

Why are compilers hard to build?
What if compilers were synthesized?

builds

Hardware

Design

Compiler

Generator

4&1(1 by

Why are compilers hard to build?
What if compilers were synthesized?

Why are compilers hard to build?
What if compilers were synthesized?

%%
Programs

compiled
by

Compiler

y\gemerates
mpiler
ontol Co prie

Generator

builds Hardware /Zad by
—_—

Design

Why are compilers hard to build?
What if compilers were synthesized?

%%
Programs

compiled
by

Compiler

y\gemerates
mpiler
ontol Co prie

Generator

builds Hardware /Zad by
—_—

Design

builds

%%
Programs

Compiledl
piler

by
Com verifies
y\gemerates

ontol

Hardware

Compiler

Generator

4&1(1 by

Design

Why are compilers hard to build?
What if compilers were synthesized?

builds

%%
Programs

compiled
by

ontol

Hardware

Design

verifies
y\gemerates

Compiler

Generator

4ad by

Why are compilers hard to build?
What if compilers were synthesized?

Why are compilers hard to build?
What if compilers were synthesized?

%é

j—m=

But best of all, this approach can scale

[build] as every new hardware design can reuse

[build] the same compiler generator, removing that multiplicative factor on effort and bugs that exists today.
In this ideal world,

[build] there is no hardware lottery, at least not because of compilers.

==
y
-

\

-

==
v

\

-

==
¥

M

-

=I= ==

v v
- -

A \4
j-m {-mm
EE BE

v A4

- .

\ \4
-~ {-mm
BE BE

v A4

- -

\4 \d
{f-mm {-mm

Why are compilers hard to build?
What if compilers were synthesized?

==
y
-

\

-

==
v

\

-

==
¥

M

-

==
v

==
y
-

fom-

==
v

A

-

==
¥

v

{—m=

==
v

v

-

==
¥

I
v

-

Why are compilers hard to build?
What if compilers were synthesized?

verifies

E generates

Compiler
Generator

E read by

==
y
-

\

-

==
¥

\

-

==
¥

M

-

==
v

==
v
-

fom-

==
v

A

-

==
¥

v

{—m=

==
¥

v

-

==
¥

I
v

-

Why are compilers hard to build?

What if compilers were synthesized?

verifies

E generates

Compiler
Generator

E read by

The Har e Lottery

Why are compilers hard to build?

What if compilers were synthesized?

So we see that
[build] ...
[build] ...

Why are compilers hard to build?

What if compilers were synthesized?

Automatically generating compilers can reduce
engineering effort and eliminate bugs.

Why are compilers hard to build?

What if compilers were synthesized?

Automatically generating compilers can reduce
engineering effort and eliminate bugs.

Furthermore, the approach scales with new
hardware designs, thus fighting against the
hardware lottery!

With that, | will now introduce the thesis statement of this talk, in which | claim
[build] ...

Compilers should be generated from formal
models of hardware.

Compilers should be generated from formal
models of hardware.

With the growing diversity of hardware and the
rapid improvement of automated reasoning,
now is the time to make this a reality.

Why Now? — Case Study: Lakeroad — Call to Action

Here’s our roadmap for the rest of the talk.

Why Now?

Let’s talk about why now is the time to do this research.

Why Now?

With the growing diversity of hardware and the
rapid improvement of automated reasoning,
now is the time to make this a reality.

We claim that, with the growing diversity of hardware and the rapid improvement of automated reasoning, now is the time to make automatic generation of compilers a
reality.

Why Now?

With the growing diversity of hardware

First, let’s talk about what we mean by the growing diversity of hardware.

Why Now?

As soon as | mention the diversity of hardware, I’m sure that the first thing that pops into peoples’ minds is hardware for machine learning, such as
[build] GPUs and

[build] custom machine learning ASICs.

Yet even within

[build] processors like Apple’s A16, we’re seeing the addition of specialized accelerators like GPUs and Neural Engines.

Consider also platforms like

[build] Xilinx’s Zynq chip, which includes both an ARM CPU and a reconfigurable FPGA, making quite an interesting target for compilers.
Lastly, far from the realm of silicon-based computing, people have begun computing using things like

[build] DNA strand displacement or

[build] metamaterials.

Though these are far from what we would normally consider “hardware”, they require compilers nonetheless!

Given the dizzying array of hardware available today, it’s clear that

[build] hardware is growing more diverse, and that compilers for new hardware are desperately needed.

This diversity can be intimidating:

[build] how could we possibly generate compilers for all of this hardware?

But the explosion of new hardware platforms actually works in our favor,

[build] because as hardware diversifies, it gets more specialized, and thus, potentially easier to target with automated methods.

Why Now?

NVIDIA Tensor Cores

NVIDIA Tensor Cores

Google TPU

Why Now?

AWS Inferentia

Google TPU

Neural
Engine

NVIDIA Tensor Cores AWS Inferentia

Display
Engine

Image signal
processor

Apple A16

Google TPU

Display
Engine
Neural
Engine -
Image signal
processor

NVIDIA Tensor Cores AWS Inferentia Apple A16

Xilinx Zynqg

Google TPU

Display
Engine
Neural
Engine .
Image signal
processor

AWS Inferentia Apple A16

'w AND1
S,

Gerasimova et al. Connectable DNA Logic Gates: OR and XOR Logics.

Xilinx Zynqg

Google TPU

Display
Engine
Neural
Engine

Image signal
processor

Xilinx Zynqg

NVIDIA Tensor Cores AWS Inferentia Apple A16

12

b AND2
F

G

o

Gerasimova et al. Connectable DNA Logic Gates: OR and XOR Logics. e — o ¢ L? v}
Fre

'b’ ANDI
)oD
e

Parsa et al. Universal Mechanical Polycomputation in Granular Matter.

Why Now?

T e
ZYNQ: |
Google TPU s’
XCIUISES”
FrvB1ISh
s Displa pF2s3et A
9 =]
N araware gro O ore daiverse ore complilers are gdesperate eeaded
NVIDIA Tens
11

OR

”*%-.)))

AND2

+

. =)

Gerasimova et al. Connectable DNA Logic Gates: OR and XOR Logics.

o)~ %®
Sl A

Parsa et al. Universal Mechanical Polycomputation in Granular Matter.

Why Now?

T e
ZYNQ: |
Google TPU s’
XCIUISES”
FrvB1ISh
9 Displa oFas3biA
9 = "l
N araware gro O ore diverse ore compillers are desperate eeded
NVIDIA Tens O OoulQ e po D pport all o araware
11

OR
AND2

Gerasimova et al. Connectable DNA Logic Gates: OR and XOR Logics.

o)~ %®
Sl A

Parsa et al. Universal Mechanical Polycomputation in Granular Matter.

Why Now?

AND2
12

Gerasimova et al. Connectable DNA Logic Gates: OR and XOR Logics

Google TPU
\\
E\
S
NS araware gro O ore dive
NVIDIA Tens O oliile e po D
AS 3 argaware dive e ofs
11 .
A
NO
OR
F-

)q_\N‘h’ \
ZNQ: |
UaSceT
XCIUISES \
"\’I!\&l s
Displa PO
aine
ore compilers are desperate eeded
PPO d O dl'0 al'e
pPe d cd, Adlll ed S O 1dlfge

o)~ "@j®
Sl A

Parsa et al. Universal Mechanical Polycomputation in Granular Matter.

Why Now?

— L e e i

yCTUISEC™

FrvB15h R
DFas3bt A .

Xilinx Zynqg

NOT
Crn

e v/”ﬁﬁ g

Parsa et al. Universal Mechanical Polycomputation in Granular Matter.

Gerasimova et al. Connect:

Previous work on automatically generating compilers largely focuses on

[build] processors.

Generating compilers for processors is

[build] quite a difficult task, as processors are general purpose, and compilers for general purpose processors must handle all of their capabilities.

NVIDIA Tensor Cores

Why Now?

Gerasimova et al. Connect:

Describing Instruction SetUsing nML

A. Fauth! J. Van Praet? M. Freericks!
Institut fir Technische Informatik 2IMEC
Tech. Univ. Berlin, Franklinstr. 28/29 Kapeldreef 75
D-10587 Berlin, Germany B-3001 Leuven, Belgium

1995

Retargetable Generation of Code Selectors
from HDL Models

Rainer Leupers, Peter Marwedel
University of Dortmund, Dept. of Computer Science 12, 44221 Dortmund, Germany

email: leupers|marwedel@Is12.informatik.uni-dortmund.de
1997

Automatic Tool Generation from Structural

Processor| Descriptions

Florian Brandner 2009

Parsa et al. Universal

Xilinx Zynqg

T
e ;/’Yqﬁ g

lechanical Polycomputation in Granular Matter.

Why Now?

Describing Instruction SetUsing nML

b A. Fauth! J. Van Praet? M. Freericks!
nstitut fiir Technische Informatik 2IMEC
Tech. Univ. Berlin, Franklinstr. 28/29 Kapeldreef 75
D-10587 Berlin, Germany B-3001 Leuven, Belgium

1995

Retargetable Generation of Code Selectors

nerating compilers for general-purpose hardware is diffic

University of Dortmund, Dept. of Computer Science 12, 44221 Dortmund, Germany

email: leupers|marwedel@Is12.informatik.uni-dortmund.de
1997

Gerasimova et al. Connect§

Automatic Tool Generation from Structural

Processor| Descriptions

Florian Brandner 2009

©Q
oQ C

XUNXe
Q-
(AL
XCIUISES”

VB

onsrid
DF2s3e A k5

Sk

Xilinx Zynqg

F,

)0

—7
croquen®

Parsa et al. Universal Mechanical Polycomputation in Granular Matter.

-

Google TPU

JCTUISEE™

FrvENSh od
nF’MSl\A 4

Display
Engine
Neural
Engine .
Image signal
processor

NVIDIA Tensor Cores AWS Inferentia Apple A16

Gerasimova et al. Connectable DNA Logic Gates: OR and XOR Logics.

g v/”ﬁﬁ g

Parsa et al. Universal Mechanical Polycomputation in Granular Matter.

On the other hand, all of the new hardware we’re talking about is special purpose,
[build] which makes the task of reasoning about hardware’s behavior much more feasible for automated methods.

But not only is our hardware more amenable to automated reasoning; our tools for automated reasoning are now powerful enough to take on the task of automated
compiler generation.

Google TPU

Gerasimova et al. Connectable DNA Logic Gates: OR and XOR Logics.

Neural
Engine

XUNKe
ZYNQ:
uraScae’”
YCIVISEG
56 CHEVa)
Display an
Engine

Image signal
processor

Qg -
el o S, vj
et 8

Parsa et al. Universal Mechanical Polycomputation in Granular Matter.

Why Now?

Consider, for example,
[build] SAT and SMT solvers, whose performance have been
[build] steadily increasing,

Or the relatively new technique of
[build] equality saturation, which has already shown great promise for compiler construction,

And of course it wouldn’t be a talk in 2023 if | didn’t mention
[build] large language models, which are powerful tools for generating hardware code, among other tasks.

Given that this is only a small selection of the automated reasoning tools available, it’s clear that
[build] ...

CPU time (s)

Why Now?

results of the SAT competition/race winners on the SAT 2009
application benchmarks, 20 min timeout

180

1200 —— T — " :
imma
Zehaff 2002) o N o, $¢¢
+ Berkmin (2002) ’ . »
O Forklift (2003) F - v & @
1000 ® Sieze @003) * o o
Zehaff (2004) ¢ o - B r ®
SatELite (2005) - . v
Minisat 2 (2006) & S S, 4
4 Picosat (2007) o Fa s T f
Rsat 2007) o WO
800 v Minisat2.1 2008) g - s A ;‘b 1
Precosat (2009) " -, ’ & 08
* Glucose (2009) A 0
A< ov o
Clasp (2009) m LI S oo
 Cryptominisat (2010) - L A
L o i
600 8 oA ;¥ &
? P - °
L ’ ’?‘ ﬁ;
© contrasat (2011) N
400 % -
200+ 9
0 S 1 1 L L
20 40 60 80 100 120 140 160

no. problems solved

Jérvisalo et al. 2012. The international SAT solver competitions.

CPU time (s)

Why Now?

results of the SAT competition/race winners on the SAT 2009
application benchmarks, 20 min timeout

1200

1000 -

800 |-

600

400

T T T T T = T T
Limmat (2002) .f

Zchaff (2002)
+ Berkmin (2002) ’
O Forklift (2003) -
® Sicge (2003)

Zchaff (2004) " o

SaiELite (2005) g -

Minisat 2 (2006)
& Picosat (2007) o

Rsat (2007) ¢ B - "

o 7

Oo

v Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)
Clasp (2009)
 Cryptominisat (2010)
© Lingeling (2010)
© Minisat 2.2 2010)
© Glucose 2 (2011)

© Glueminisat (2011) N Im provement
© contrasat (2011) OVer ti me

i L 1 L L
20 100 120 140 160 180
no. problems solved

Jérvisalo et al. 2012. The international SAT solver competitions.

CPU time (s)

Why Now?

results of the SAT competition/race winners on the SAT 2009
application benchmarks, 20 min timeout

1200

1000 -

200+

T T T T FTE T T
Limmat (2002) s
Zehaff (2002)
Berkmin (2002) r]
O Forklift (2003) F
= Siege (2003)
Zchaff (2004) o
SatELite (2005) cof -
Minisat 2 (2006)
 Picosat (2007)

o
Rsat (2007) g . "
o)

Op
&,
e

- 7] ©

v Minisat 2.1 (2008)
Precosat (2009) -
Glucose (2009)
Clasp (2009)

 Cryptominisat (2010)

© Lingeling (2010)

© Minisat 2

© Glucos

© Glueminisat 2011)

© contrasat (2011)

§ Improvement
over time

i - L L L L
20 80 100 120 140 160
no. problems solved

Jérvisalo et al. 2012. The international SAT solver competitions.

Equality Saturatio

Vectorization for Digital Signal Processors
via Equality Saturation

Alexa VanHattum Rachit Nigam Vincent T. Lee
Cornell University Cornell University Facebook Reality Labs Research
Ithaca, NY, USA Ithaca, NY, USA Redmond, WA, USA

Adrian Sampson
Cornell University
Ithaca, NY, USA

James Bornholt
The University of Texas at Austin
Austin, TX, USA

CPU time (s)

Why Now?

results of the SAT competition/race winners on the SAT 2009
application benchmarks, 20 min timeout

1200

1000

T T T T
Limmat (2002)
Zehaff (2002)
Berkmin (2002) r]
O Forklift (2003) -
Sicge (2003)
Zchaff (2004) o
SatELite (2005)
Minisat 2 (2006)

0g
&,

 Picosat (2007) o
Rsat (2007) o

+ M3 2008 L - '
Precosat (2009) o %
Glucose (2009)
Clasp (2009)

 Cryptominisat (2010)

© Glucose 2 (2011)
© Glueminisat (2011)
© contrasat (2011)

Improvement
over time

L
160

L L
120 140

n
80 100
no. problems solved

Jérvisalo et al. 2012. The international SAT solver competitions.

20 40

Equality Saturatio

Vectorization for Digital Signal Processors
via Equality Saturation

Alexa VanHattum Rachit Nigam Vincent T. Lee
Cornell University Cornell University Facebook Reality Labs Research
Ithaca, NY, USA Ithaca, NY, USA Redmond, WA, USA
James Bornholt Adrian Sampson

Cornell University

The University of Texas at Austin
Ithaca, NY, USA

Austin, TX, USA

Benchmarking Large Language Models for
Automated Verilog RTL Code Generation

Shailja Thakur*, Baleegh Ahmad*, Zhenxing Fan*, Hammond Pearce*,
Benjamin Tan', Ramesh Karri*, Brendan Dolan-Gavitt*, Siddharth Garg*
*New York University, fUniversiLy of Calgary

CPU time (s)

Why Now?

results of the SAT competition/race winners on the SAT 2009
application benchmarks, 20 min timeout

1200

1000

800 -

600

400 -

T T

T

Limmat (2002)

Zchaff (2002)
20

icose 2 (2011)
© Glueminisat (2011)
© contrasat (2011)

sy - _ L L L L
20 40 60 80 100 120 140 160 180
no. problems solved

Jérvisalo et al. 2012. The international SAT solver competitions.

Equality Saturation

Vectorization for Digital Signal Processors
via Equality Saturation
Alexa VanHattum Rachit Nigam Vincent T. Lee

Cornell University Cornell University Facebook Reality Labs Research
Ithaca, NY, USA Ithaca, NY, USA Redmond, WA, USA

James Bornholt Adrian Sampson
The University of Texas at Austin Cornell University

Automated Verilog RTL Code Generation

Shailja Thakur*, Baleegh Ahmad*, Zhenxing Fan*, Hammond Pearce*,
Benjamin Tan, Ramesh Karri*, Brendan Dolan-Gavitt*, Siddharth Garg*
*New York University, fUniversily of Calgary

Why Now?

With the growing diversi

ty of hardware and the
rapid improvement of automated reasoning,
now is the time to make this a reality.

So, why is now the time to make the automatic generation of compilers a reality? Well,
[build] ...

Furthermore,

[build] ...

Finally,

[build] ...

Why Now?

With the growing diversity of hardware and the
rapid improvement of automated reasoning,
now is the time to make this a reality.

Hardware is diversifying, and we need new compilers.

Why Now?

With the growing diversity of hardware and the
rapid improvement of automated reasoning,
now is the time to make this a reality.

Hardware is diversifying, and we need new compilers.
Modern targets are more amenable to automated methods.

Why Now?

With the growing diversity of hardware and the
rapid improvement of automated reasoning,
now is the time to make this a reality.

Hardware is diversifying, and we need new compilers.

Modern targets are more amenable to automated methods.

Automated reasoning tools are ready for the task of compiler generation.

Why Now?

Now,

Case Study: Lakeroad

...let’s talk about a concrete example of generating a compiler from hardware models, in a project we call Lakeroad.

Case Study: Lakeroad

With the growing diversity of hardware

We keep talking about the growing diversity of hardware platforms. Now,
[build] let’s look at a concrete example: FPGAs.

Case Study: Lakeroad

With the growing diversity of hardware

Let’s look at a concrete example: FPGAs.

Case Study: Lakeroad

FPGAs are reconfigurable devices that can be used to implement hardware.

At a high level, though, you can think of an FPGA as being a bag filled with parts, or primitives.

Case Study: Lakeroad

Primitives

In the past, FPGAs consisted only of
[build] lookup tables, which are primitives that can be configured to implement logic gates.

Over the years, FPGAs have added specialized primitives such as

[build] carry chains to implement fast arithmetic.

One of the most interesting and impactful additions to FPGAs has been the inclusion of

[build] digital signal processors or DSPs, which are small, programmable embedded processors.

Primitives

Lookup Tables
(Programmable logic)

Case Study: Lakeroad

Case Study: Lakeroad

Primitives

o o

Carry Chains

Lookup Tables
(Programmable logic)

Case Study: Lakeroad

Primitives

o o

Carry Chains

Lookup Tables
(Programmable logic)

Case Study: Lakeroad

With the growing diversity of hardware

Even within FPGAs, hardware is diversifying.

So we can see that

[build] ...
[build] Are new primitives a challenge for FPGA compilers, as our thesis would suggest?

Case Study: Lakeroad

With the growing diversity of hardware

Even within FPGAs, hardware is diversifying.

Are new primitives a challenge for FPGA compilers?

Case Study: Lakeroad

Are new primitives a challenge for FPGA compilers?

(d+a) *b) N c

To test this, we will attempt to compile a simple hardware design onto a Xilinx FPGA’s DSP.

In our case, our simple design takes four inputs and computes this expression in three pipeline stages.

Case Study: Lakeroad

Are new primitives a challenge for FPGA compilers?

‘: X"_INX@, Chapter 1: Overview

48-Bit Accumulator/Logic Unit

(d+a) *b) Nc

Pattern
Detect

Figure 1-1: Basic DSP48E2 Functionality

The Xilinx DSP documentation claims that this expression is supported on the DSP. But when we attempt to compile our design using the state of the art compiler for
Xilinx FPGAs, we see a surprising result.

Case Study: Lakeroad

Are new primitives a challenge for FPGA compilers?

Report Cell Usage:

DSP48E1
LUT2
| SRL16E

We see that the design is in fact compiled onto DSPs; but instead of
[build] using a single DSP as expected, it uses two DSPs and ten look up tables.

Case Study: Lakeroad

Are new primitives a challenge for FPGA compilers?

Report Cell Usage:

DSP48E1l Should use only
LUT2 a single DSP!

| SRL16E

Case Study: Lakeroad

Are new primitives a challenge for FPGA compilers?

So, are new primitives...

From our brief experiment, it seems like the answer is
[build] yes!
[build] But this is unsurprising...

Case Study: Lakeroad

On brief inspection, yes!

On brief inspection, yes!

But this is unsurprising—DSPs are
complicated.

The manual for our Xilinx DSP alone is
[build] over 75 pages long.

Case Study: Lakeroad

Case Study: Lakeroad

£ XILINX.

MULTSIGNOUT and CARRYCASCOUT .
Summary. ...

e T3

Appendix A: Additional Resources and Legal Notices
Xilinx Resources . .
Solution Centers. .

Documentation Navigator and Design Hubs . e TS
References 76
Please Read: Important Legal NOtICeSuuuutunsnseeeeeeaeenennnieeiens 77

Ultrascale Architecture DSP4SE2 Slice T 5
UG579 (v1.11) August 30, 2021 wwwxilinx.com

Case Study: Lakeroad

£ XILINX.

MULTSIGNOUT and CARRYCASCOUT .

Summary.

Appendix A: Additional Resources and Legal Notices
Xilinx Resources .

Please Read: Important Legal Notices

DSP manual is over 75
pages long

1 UltraScale Architecture DSP48E2 Slice 5
1 UG579 (v1.11) August 30, 2021 wwwxilinx.com

Case Study: Lakeroad

module DSP48E2 #(
parameter integer ACASCREG = 1,
parameter integer ADREG = 1,
parameter integer ALUMODEREG = 1,
parameter AMULTSEL = "A",
parameter integer AREG = 1,
parameter AUTORESET_PATDET = "NO_RESET",
parameter AUTORESET_PRIORITY = "RESET",
parameter A_INPUT = "DIRECT",

(C
output [29:0] ACOUT,
output [17:0] BCOUT,
output CARRYCASCOUT,

input [29:0] A,
input [29:0] ACIN,
input [3:0] ALUMODE,
input [17:0] B,
input [17:0] BCIN,
input [47:0] C,

);...

Furthermore, instantiating a DSP requires
[build] setting over 100 ports and parameters, while
[build] obeying strict requirements on port and parameter values, described throughout the 75 page manual.

With all of these complex interdependencies on what values are legal for which parameters based on the values of other parameters,
[build] configuring a DSP is starting to sound a lot like writing a program.

module DSP48E2 #(

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

)(...

output [29:0] ACOUT,
output [17:0] BCOUT,

integer ACASCREG = 1,

integer ADREG = 1,

integer ALUMODEREG = 1,
AMULTSEL = "A",

integer AREG = 1,
AUTORESET_PATDET = "NO_RESET",
AUTORESET_PRIORITY = "RESET",
A_INPUT = "DIRECT",

Configuring the DSP

requires setting 100+

output CARRYCASCOUT, Yl Mol

input [29:
input [29:

0] A,
0] ACIN,

input [3:0] ALUMODE,

input [17:
:0] BCIN,
0] C,

input [17
input [47

);...

o1 B,

Case Study: Lakeroad

Case Study: Lakeroad

module DSP48E2 #(

par‘ameter‘ integer‘ ACASCREG = 1, Table 2-4: OPMODE Control Bits Select X Multiplexer Outputs
. Itipl

parameter }nteger ADREG = 1, opmsgﬂsﬂ]opmosqsm]opmo;qaa]ovmoﬁqnm xﬁ#&ﬁf“' Notes
parameter integer ALUMODEREG = 1, - p— - 00 5 Default
parameter AMULTSEL = "A", - o o o v Must select with
parameter integer AREG = 1, OPMODE(32] = 01
parameter AUTORESET_PATDET = "NO_RESET", = o = = - pa e
parameter AUTORESET_PRIORITY = "RESET", = o = i ki
parameter A_INPUT = "DIRECT",

)(C Configuring the DSP When either TWO24 or FOUR12 mode is selected, the

output [29:0] ACOUT, requires setting 100+ multiplier must not be used, and USE_MULT must be set

output [17:0] BCOUT

IRVl POrts and parameters o MO

inDUt [29 : ®] A > :‘o\:v.::zn these data pins are not used and to reduce leakage power dissipation, the data pin input signals must be tied High
. E 1 u: u ISS|| ion, ini ut si u: 1 igh,|
1nput [29 . @] ACIN) the input registerr:nus! be selected, and the CE and RSTgin:ut control gignals must be tF:ed ng. Ag example of unused ?:

input recommended settings would be setting C[47:0] = all ones, CREG = 1, C_EC =0, ang RSTC = 0.

input [3:0] ALUMODE,
. 17:07 B 2. These signals are dedicated routing paths internal to the DSP48E2 column. They are not accessible via general routing
1nput [: :l N resources.

input [17 . @] BCIN N 3. All signals are active High.
input [47:0] C,

);...

Case Study: Lakeroad

module DSP48E2 #(

par‘ameter‘ integer‘ ACASCREG = 1, Table 2-4: OPMODE Control Bits Select X Multiplexer Outputs
: Itipl

parameter }nteger‘ ADREG = 1, opmo‘gs[s:n OPMOIZ)E[6:4] opmo\ée[s:z] OPMO)I()E[l:O] XNcI;L:::nexer Notes
parameter integer ALUMODEREG = 1, -~ p— - 00 5 Default
parameter AMULTSEL = "A", . o 01 o1 M Must select with
parameter integer AREG = 1, OPMODE(32] = 01
parameter AUTORESET_PATDET = "NO_RESET", > o o 1‘; A?B ':sqm :"‘G”
parameter AUTORESET_PRIORITY = "RESET", = o = i b wiee
parameter A_INPUT = "DIRECT",

)(C Configuring the DSP When either TWO24 or FOUR12 mode is selected, the

output [29:0] ACOUT, requires setting 100+ multiplier must not be used, and USE_MULT must be set

output [17:0] BCOUT, t
o NONE.

output CARRYCASCOUT, Yl Mol
input [29:0] A, Notes: . e — —
. 14 When these data pins are not used and to reduce leakage power dissipation, the data pin input signals must be tied High,
'anUt [29 . @] ACIN) the input register must be selected, and the CE and RST input control signals must be tied Low. An example of unused C
input [3 :Q:l ALUMODE s input recommended settings would be setting C[47:0] = all ones, CREG = 1, EC =0, and RSTC = 0.

2. These signals are dedicated routing paths internal to the DSP48E2 column. They are not accessible via general routing

input [171@] B, .resources.
input [17:0] BCIN,
input [47:0] C,

) .
Configuring a DSP sounds a lot like writing a program!

w

. All signals are active High.

mo

)(...

dule DSP48E2 #(
parameter integer ACASCREG = 1,
parameter integer ADREG = 1,

Case Study: Lakeroad

Table 2-4: OPMODE Control Bits Select X Multiplexer Outputs

w
OPMODE[8:7]

z Y
OPMODE[6:4] OPMODE[3:2]

X
OPMODE[1:0]

X Multiplexer
Output

Notes

par, ALLBIODLEDLL

pan
par
pan
pan

out
out
out

inp
inp
inp
inp
inp

1

<1 Insight #1: configuring DSPs and other complex
primitives is similar to writing a program...

High,
d C

iﬂp,u, | LS 8 s vx

);...

Our first insight is that...

[build] so why not use program synthesis?

For those unfamiliar with program synthesis, | won’t go into too much detail, but just know that
[build] solver aided program synthesis is the process of...

mo

)(...

dule DSP48E2 #(
parameter integer ACASCREG = 1,
parameter integer ADREG = 1,

Case Study: Lakeroad

Table 2-4: OPMODE Control Bits Select X Multiplexer Outputs

w
OPMODE[8:7]

z Y
OPMODE[6:4] OPMODE[3:2]

X
OPMODE[1:0]

X Multiplexer
Output

Notes

par, ALLBIODLEDLL

pan
par
pan
pan

out
out

inp
inp
inp
inp
inp

1

oul ...SO use program synthesis.

<1 Insight #1: configuring DSPs and other complex
primitives is similar to writing a program...

High,
d C

iﬂp,u, | LS 8 s vx

);...

Case Study: Lakeroad

module DSP48E2 #(

)(...

parameter integer ACASCREG = 1,

Table 2-4: OPMODE Control Bits Select X Multiplexer Outputs

. w z Y X
parameter integer ADREG = 1, OPMODE[8:7]|OPMODE[6:4]|(OPMODE([3:2] |OPMODE[1:0]
L 2 L

X Multiplexer
Output

Notes

par. ALLBIODLEDLL C)

pan
par
pan
pan

out
out

oul ...SO use program synthesis.

inp Solver-aided program synthesis: using SMT/SAT/etc.
inp
inp
inp
inp

to generate programs by solving a set of constraints.

<1 Insight #1: configuring DSPs and other complex
primitives is similar to writing a program...

inp,u_ | LS 8 s vx

);...

Case Study: Lakeroad

module DSP48E2 #(. .

par'ameter' integer‘ ACASCREG = 1 , Table 2-4: OPMODE Control Bits Select X Multiplexer Outputs

: w z Y X X Multipl
parameter integer ADRES = 16 OPMODE(8:7]| OPMODE(6:4]|OPMODE(3:2]|OPMODE[1:0] Output Notes
parameter integer ALUMODEREG = 1, = — = 00 0 Default
parameter AMULTSEL = "A", - o 0 o v Must select with
parameter integer AREG = 1, OPMODE(32] = 01
parameter AUTORESET_PATDET = "NO_RESET", ** o = = P e

" " XX XXX XX 11 AB 48-bits wide

parameter AUTORESET_PRIORITY = "RESET",
parameter A_INPUT = "DIRECT",

X(When either TWO24 or FOUR12 mode is selected, the
ou:put Ei?g% 2283? multiplier must not be used, and USE_MULT must be set
outpu : ’ to NONE.
output CARRYCASCOUT,
inDUt [29 : ®] A > :‘o\:v.:;n these data pins are not used and to reduce leakage power dissipation, the data pin input signals must be tied High
input [29 : @] ACIN) 1 the input registerﬁnust be selected, and the CE and RSTgin::t control gignalé must be tF:ed ng. Ag example of unused g |
input [3 :01 ALUMODE , input recommended settings would be setting C[47:0] = all ones, CREG = 1, CEC = 0, and RSTC = 0.

. 2. These signals are dedicated routing paths internal to the DSP48E2 column. They are not accessible via general routing
1nput [17:@] B, resources.
input [172@] BCIN, 3. All signals are active High.
input [47:0] C,
Js

Because configuring DSPs is so complicated, Xilinx provides...

Case Study: Lakeroad

module

DI ¢

para
para
para
para
para
para
para
para

outpd
outpy
outpd

inpud
inpud
inpud
inpud
inpuf
inpud

DSP48E2.v
g

l// copyright (c) 1995/2017 Xilinx, Inc.

l// ALl Right Reserved.
VILIIIIIITIIIEIII I EEI LI I 10 0110011001110111171
//

i1 N

/711 N/ Vendor + Xilinx

/N N/ Version 1 2017.3

/7 v Description : Xilinx Unified Simulation
e 48-bit Multi-Functional
i1 N Filename : DSP48E2.v

y/\ \/\

T/ W VA W

//

VILIITIIIII LT TE I E I E LT
timescale 1 ps / 1 ps

[celldefine

frodute DsPasE2 #(
ifdef XIL_TINING
parameter LOC = "UNPLACED",
endif
parameter integer ACASCREG = 1,
parameter integer ADREG = 1,
parameter integer ALUMODEREG = 1,
parameter AMULTSEL = "A"
parameter integer AREG = 1,
parameter AUTORESET_PATDET = "NO_RESET",
parameter AUTORESET_PRIORITY = "RESET",
parameter A_INPUT = "DIRECT",
parameter integer BCASCREG = 1,
parameter BMULTSEL = "B,

D (
output [29:0] ACOUT,
output [17:0] BCOUT,
output CARRYCASCOUT,

input [29:0] A,
input [29:0] ACIN,
input [3:0] ALUMODE,
input [17:0] B,
input [17:0] BCIN,
input [47:0] €,

)3

// define constants
localparam MODULE_NAME = "DSP4SE2"j

// Parameter encodings and registers
localparam AMULTSEL_A = 0;
localparam AMULTSEL_AD = 1;
localparam AUTORESET_PATDET_NO_RESET = 03

‘endif

assign ACIN_in = ACIN;

assign ALUMODE_in[0] = (ALUMODE[0] !=
IS_ALUMODE_INVERTED_REG[0]); // rv ©

assign ALUMODE_in[1] = (ALUMODE[1] !== 1'bx) && (ALUMODE[1]
IS_ALUMODE_INVERTED_REG[1])5 // rv ©

assign ALUMODE_in[2] = (ALUMODE[2]
IS_ALUMODE_INVERTED_REG[2]); // rv ©

1'bx) && (ALUMODE[0]

1'bx) && (ALUMODE[2]

assign ALUMODE_in[3] = (ALUMODE[3] !== 1'bx) && (ALUMODE[3]
IS_ALUMODE_INVERTED_REG[31); // rv 0

assign A_in[0] = (A[0] === 1'bx) || A[0]; // rv 1

assign A_in[10] = (A[10] 1'bx) || A[2013 // rv 1

assign A_in[11] = (A[11] 1'bx) || A[11]3 // rv 1

assign A_in[12] = (A[12] 1'bx) || A[22]5 // rv 1

assign A_in[13] = (A[13] === 1'bx) || A[23]; // rv 1

assign B_in[3] = 1'bx) || B[3]3 // rv 1

assign B_in[4] = || BL4T3 // rv 1

assign B_in[5] = || BISI; // rv 1

assign B_in[6] = || BLE1; // rv 1

assign B_in[7] = || BL[713 // rv 1

assign B_in[8] = (B[8] I BI813 // rv 1

assign B_in[9] = (B[9] || BIOT3 // rv 1

assign CARRYCASCIN_in = CARRVCASCIN;

assign CARRYINSEL_in[0] = (CARRVINSEL[0] !== 1'bx) &&
CARRVINSEL[0]; // rv ©

assign CARRYINSEL_in[1] = (CARRVINSEL[1] !== 1'bx) &&
CARRYINSEL[1]3 // rv @

assign CARRYINSEL_in[2] = (CARRVINSEL[2] !== 1'bx) &&
CARRYINSEL[2]3 // rv @

assign CARRYIN_in = (CARRYIN !== 1'bx) && (CARRVIN A

IS_CARRYIN_INVERTED_REG); // rv ©
assign CEA1_in
assign CEA2_in
assign CEAD_in = (CEAD
assign CEALUMODE_in = (CEALUMODE

&& CEAL; // rv ©
&& CEA23 // rv @
&& CEAD; // rv ©

assign CEB1_in = (CEB1
assign CEB2_in = (CEB2

&& CEB1; // rv ©
&& CEB2; // rv ©

assign CECARRYIN_in = (CECARRVIN !
0
assign CECTRL_in = (CECTRL !== 1'bx) && CECTRL; // rv O

assign && CEC3 // rv @

assign && CED; // rv ©

assign

assign && CEM; // rv 0

assign && CEP; // rv ©

assign && (CLK A IS_CLK_INVERTED_REG);
/] v e

assign C_info] = (c[e]
assign C_in[10] = (c[10]
a

1'bx) || c[el; // rv 1
1'bx) || cr10l3 // rv 1

assign D_in[1] = (D[1] !== 1'bx) && D[1]; // rv ©
assign D_in[20] = (D[20] 1'bx) && D[20]3 // rv
assign D_in[21] = (D[21] 1'bx) && D[21]5 // rv

assign D_in[22]
assign D_in[23]
assign D_in[24]
assign D_in[25]
assign D_in[26]

(p[22]
(p[23]
(p[24]
(p[25]
(p[26]

1'bx) && D[22]5 // rv
1'bx) & D[2313 // rv
1'bx) && D[24]3 // rv
1'bx) && D[25]5 // rv
1'bx) && D[26]5 // rv

cocoocooo

assign D_in[8] = (D[8] D[8l; // rv o

assign D_in[9] = (D[9] p[ol; //

assign INMODE_in[0] = (INMODE[0] !== 1'bx) & (INMODE[0]
IS_INMODE_INVERTED_REG[0]); // rv ©

assign INMODE_in[1] = (INMODE[1] !
IS_INMODE_INVERTED_REG[1]); // rv ©

assign INMODE_in[2] = (INMODE[2] !== 1'bx) & (INMODE[2]
IS_INMODE_INVERTED_REG[2]); // rv ©

assign INMODE_in[3] = (INMODE[3] !
IS_INMODE_INVERTED_REG[3]); // rv ©

assign INMODE_in[4] = (INMODE[4] !== 1'bx) && (INMODE[4]
IS_INMODE_INVERTED_REG[4]); // rv ©

assign MULTSIGNIN_in = MULTSIGNIN;

assign OPMODE_in[0] = (OPMODE[0] !
IS_OPMODE_INVERTED_REG[0]); // rv ©

assign OPMODE_in[1] = (OPMODE[1] !== 1'bx) & (OPMODE[1]
IS_OPMODE_INVERTED_REG[1]); // rv ©

assign OPMODE_in[2] = (OPMODE[2] !
IS_OPMODE_INVERTED_REG[2]); // rv ©

assign OPMODE_in[3] = (OPMODE[3] !== 1'bx) & (OPMODE[3]

assign D_in[2] = (D[2] D[2]; // rv ©
assign D_in[3] = (D[3] D315 // rv @
assign D_in[4] = (D[4] p[4ls // rv o
assign D_in[5] = (D[5] D513 // rv e
assign D_in[6] = (D[6] Del; // rv @
assign D_in[7] = (D[7] DL715 // rv 0

1'bx) && (INMODE[1]

1'bx) && (INMODE[3]

1'bx) && (OPMODE[0]

1'bx) && (OPMODE[2]

1'bx) && CEALUMODE; // rvIS_OPMODE_INVERTED_REG[3]); // rv ©

1'bx) && CECARRYIN; // rv

a 1500 line simulation model of the DSP, which hardware designers use to validate their designs.

But this is useful to us as well, because
[build] ...

Case Study: Lakeroad

)3 assign CECARRYIN_in = (CECARRYIN 1'bx) && CECARRYIN; // rv|
o
module DSP48E2_V // define constants assign CECTRL_in = (CECTRL !== 1'bx) && CECTRL; // rv O
localparam MODULE_NAME = "DSP4SE2"j assign CEC_in = (CEC !== 1'bx) && CEC; // rv 0
para T 1001111111 assign CEDin & CED // rv o

l// copyright (c) 1995/2017 Xilinx, Inc. // Parameter encodings and registers assign CEINMODE_i

param;; i right reserved. localparam AMULTSEL_A = 03 assign CEM_in = (CEM && CEM; // rv 0
VILIIIIIITIIIEIII I EEI LI I 10 0110011001110111171 localparam AMULTSEL_AD = 13 assign CEP_in & CEP; // rv @
pCl ramn, S localparam AUTORESET_PATDET_NO_RESET = 03 assign CLK_in && (CLK " IS_CLK_INVERTED_REG);
A e /1 rv e
param,; ., \ s Vendor : Xilinx ‘endif assign €_in[0] = (c[e] 1tbx) || crel; // rv 1
/7y o\ Version 1 2017.3 assign C_in[10] = (c[10] 1'bx) || c[10]5 // rv 1
param,; \ Description : Xilinx Unified Simulation a
i/ 1 48-bit Multi-Functional assign ACIN_in = ACIN; assign D_in[1] = (D[1] 1'bx) & D[113 // rv @
param; /.__; n Filename : DSP48E2.v assign ALUMODE_in[0] = (ALUMODE[0] 1'bx) && (ALUMODE[0] * assign D. (p[20] 1'bx) && D[2013 // rv ©
/7 \ IS_ALUMODE_INVERTED_REG[0]); // rv © assign D, (p[21] 1'bx) p[21]; // rv @
par‘a /7 assign ALUMODE_in[1] = (ALUMODE[1] 1'bx) && (ALUMODE[1] * assign D, = (p[22] 1'bx) D[22]5 // rv @
// IS_ALUMODE_INVERTED_REG[11); // rv © assign D, (p[23] 1'bx) D[231; // rv @
DA QW //1/11 assign ALUMODE_in[2] = (ALUMODE[2] 1'bx) && (ALUMODE[2] " assign D, 1'bx) && D[24]3 // rv O
IS_ALUMODE_INVERTED_REG[2]); // rv © assign D, 1'bx) D[25]3 // rv @
- timescale 1 ps / 1 ps assign ALUMODE_in[3] = (ALUMODE[3] && (ALUMODE[3] assign D, (p[26] 11 rv e
IS _ALUMODE INVERTED REG[3])3 assign D rv 0

)(. 4 .
ol S Simulation models provide the formal semantics of behaviors and cons
outpd 7 necessary for automated reasoning!

parameter integer ALUMODEREG assign B_ B[5]; 1 IS_INMODE_INVERTED_REG[0])3 // rv 0
A parameter AMULTSEL = "A", assign B_in[6] B[6]; // rv 1 assign INMODE_in[1] = (INMODE[1] 1'bx) && (INMODE[1]
parameter integer AREG = 1, assign B_in[7] = B[713 // rv 1 IS_INMODE_INVERTED_REG[1]); // rv ©
parameter AUTORESET_PATDET = "NO_RESET", assign B_in[8] B[8l3 // rv 1 assign INMODE_in[2] = (INMODE[2] 1'bx) & (INMODE[2] A
in u1 parameter AUTORESET_PRIORITY = "RESET", assign B_in[9] B[9]; // rv 1 IS_INMODE_INVERTED_REG[2]); // rv @
p parameter A_INPUT = "DIRECT", assign CARRYCASCIN_in = CARRVCASCIN; assign INMODE_in[3] = (INMODE[3] 1'bx) && (INMODE[3] A h
inpuf] perameter integer seascres =1, assign CARRVINSEL_in[0] = (CARRVINSEL[0] 1'bx) && IS_INMODE_INVERTED_REG[31); // rv 0 P
PUTY oraneter muLTseL = mer, CARRYINSEL[0]3 // rv O assign INMODE_in[4] = (INMODE[4] 1'bx) && (INMODE[4] A -
. q{ assign CARRVINSEL_in[1] = (CARRVINSEL[1] 1'bx) && IS_INMODE_INVERTED_REG[4])3 // rv ©
lnpu D (CARRYINSEL[1]5 // rv © assign MULTSIGNIN_in = MULTSIGNINj
- output [29:0] ACOUT, assign CARRVINSEL_in[2] = (CARRVINSEL[2] 1bx) && assign OPMODE_in[0] = (OPMODE[0] 1'bx) && (OPMODE[0] *
-anL” output [17:0] BCOUT, CARRYINSEL[2]3 // rv © IS_OPMODE_INVERTED_REG[0]); // rv @
. output CARRYCASCOUT, assign CARRYIN_in = (CARRYIN !== 1'bx) && (CARRVIN A assign OPMODE_in[1] = (OPMODE[1] !== 1'bx) && (OPHODE[1] "
1HDU1 IS_CARRYIN_INVERTED_REG); // rv © IS_OPMODE_INVERTED_REG[1]); // rv ©
. assign CEA1_in = 1'bx) && CEAL3 // rv 0 assign OPMODE_in[2] = (OPMODE[2] 1'bx) && (OPMODE[2] *
'Lﬂpl.“ input assign CEA2_in 1'bx) && CEA2; // rv 0 IS_OPMODE_INVERTED_REG[2]); // rv ©
input assign CEAD_in = (CEAD !== 1'bx) && CEAD; // rv O assign OPMODE_in[3] = (OPMODE[3] 1'bx) && (OPMODE[3] A
e input assign CEALUMODE_in = (CEALUMODE !== 1'bx) && CEALUMODE; // rvIS_OPMODE_INVERTED_REG[3]); // rv ©
input
) M input assign CEB1_in & CEB13 // rv 0

input assign CEB2_in L

&& CEB2; // rv ©

Case Study: Lakeroad

module DSP48E2 #(

pan
pan
pan
pan
par
pan
pan
pan

(C
out
out
out

Insight #2: we can extract the semantics
necessary for automated reasoning

inp . : .
B directly from simulation models.
ing

This leads us to our second insight, which is that we can ...

Case Study: Lakeroad

Lakeroad: a hardware synthesis tool utilizing
program synthesis and semantics extracted
from simulation models to target complex,
programmable FPGA primitives.

Using these two insights, we build Lakeroad, which is...

Case Study: Lakeroad

Workload Signed? # Stages Yosys SOTA Lakeroad

((d+a) *b) | c X 1 1DSP,20 LUT 1DSP, 10LUT 1DSP
((d-a) *b) | c v 2 1DSP,20 LUT 1DSP, 10LUT 1DSP
((d-a) *b) * ¢ v 3 1DSP, 22 LUT 2DSP, 11 LUT 1DSP
((d+a) *b) & c v 3 1DSP, 22 LUT 2DSP, 11 LUT 1DSP
((d+a) *b) * ¢ X 2 1DSP, 18 LUT 1DSP,9LUT 1DSP

Initial results with Lakeroad suggest that Lakeroad is able to find mappings that other tools do not, successfully mapping designs onto
[build] a single DSP when other tools
[build] fail to do so.

Workload
((d + a)
((d - a
((d - a
((d + a)
((d + a)

* % X X %

>

> R0

0o oo o0

Signed?

oINS

Stages
1

N W W N

Case Study: Lakeroad

Yosys

1DSP, 20 LUT
1DSP, 20 LUT
1DSP, 22 LUT
1DSP, 22 LUT
1DSP, 18 LUT

SOTA

1DSP, 10 LUT
1DSP, 10 LUT
2DSP, 11 LUT
2DSP, 11 LUT
1DSP, 9 LUT

Lakeroad
1 DSP
1 DSP
1 DSP
1 DSP
1 DSP

Workload
((d + a)
((d - a
((d - a
((d + a)
((d + a)

* % X X %

>

> R

0o oo o0

Signed?

oINS

Stages
1

N W W N

Case Study: Lakeroad

Yosys

1DSP, 20 LUT
1DSP, 20 LUT
1DSP, 22 LUT
1DSP, 22 LUT
1DSP, 18 LUT

SOTA

1DSP, 10 LUT
1DSP, 10 LUT
2DSP, 11 LUT
2DSP, 11 LUT
1DSP, 9 LUT

Lakeroad
1 DSP
1 DSP
1 DSP
1 DSP
1 DSP

Case Study: Lakeroad

How does Lakeroad support the thesis of this talk?
We claim that

[build] ...

Lakeroad exempilifies this directly, by

[build] automatically enabling compilation...

Furthermore, we claim that

[build] ...

Which Lakeroad demonstrates by showing that
[build] automated methods are...

Case Study: Lakeroad

Compilers should be generated from formal
models of hardware.

Case Study: Lakeroad

Compilers should be generated from formal
models of hardware.

Lakeroad automatically enables compilation to FPGA

primitives, given the simulation models of those primitives.

Case Study: Lakeroad

Compilers should be generated from formal
models of hardware.

Lakeroad automatically enables compilation to FPGA

primitives, given the simulation models of those primitives.

With the growing diversity of hardware and the
rapid improvement of automated reasoning,
now is the time to make this a reality.

Case Study: Lakeroad

Compilers should be generated from formal
models of hardware.

Lakeroad automatically enables compilation to FPGA

primitives, given the simulation models of those primitives.

With the growing diversity of hardware and the
rapid improvement of automated reasoning,
now is the time to make this a reality.

Lakeroad demonstrates that automated methods are now powerful

enough address gaps in existing state-of-the-art tools.

Now finally,

Case Study: Lakeroad

Let’s conclude with a call to action.

Call to Action

The Hardware Lottery

Sara Hooker

Google Research, Brain Team

shooker@google.com I

In conclusion, | want to end where we began.
| believe the hardware lottery is a direct challenge to our community.

If there’s one message | want to leave you with today, it’s this:
[build] It’s on on all of us in this room to fight against the hardware lottery, by making sure that practitioners in all fields have the hardware and compilers they need to

advance their research.

What I’ve proposed today —automatically generating compilers from formal models of hardware—is just one possible solution. Whether or not you agree with the
solution, | hope you’ll agree with the larger goal of ending the hardware lottery once and for all.

The Hardware Lottery

Sara Hooker

Google Research, Brain Team

shooker@google.com I

It’s on on all of us to fight against the hardware lottery, by making

sure that practitioners in all fields have the hardware and compilers
they need to advance their research.

Thank you, everybody!

Thank you!

PAUL G.
ALLEN
SCHOOL

A

