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Generate Compilers from 
Hardware Models!

Hi everybody. My name is Gus Smith, and I’m a PhD candidate at the University of Washington’s PLSE lab. Today I’m going to be talking about why we should generate 
compilers from hardware models.



Ben Kushigian Vishal Canumalla Andrew Cheung René Just Zachary Tatlock

First, let me shout out my coauthors in PLSE: Ben, Vishal, Andrew, Rene, and Zach, some of whom are in the audience today!



2020

In 2020, Sara Hooker from Google Research released a paper titled the Hardware Lottery. The thesis of this paper is that


[build] …


She argues that, for example, the current track of matrix-multiplication-based advances in machine learning are undeniably linked to the abundance of hardware for 
matrix multiplication, and that other research directions in machine learning are subsequently less likely to be successful.


The hardware lottery is a direct challenge to us in this room. By my reading, the takeaway for our community is that

[build] new platforms (that is, new hardware and their associated compiler stack) should be easier to build, so that the best ideas win — not just the ideas with hardware 
on their side!


In this talk, I’m going to focus on what I know:

[build] compilers.

So, let’s ask the question,

[build] why are compilers so difficult
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Hardware and compilers have a disproportionate role in 
deciding which research ideas succeed or fail.

Takeaway for our community: new platforms (hardware 
+ compiler stack) should be easier to build, so that the 

best ideas win!Why are compilers hard to build?



Why are compilers hard to build?

Imagine we have

[build] a hardware engineer who

[build] builds a new hardware design. If she wants to run 

[build] programs on her hardware, she’ll need a

[build] compiler that

[build] compiles programs to run on her design. This requires

[build] a compiler engineer, who, with much time and effort

[build] builds a compiler, whose design is informed not only by 

[build] the hardware design itself, but also by 

[build] communications with the hardware designer,

[build] any documentation that exists for the design, and finally, by

[build] the compiler engineer’s own internal model of how the hardware works. If that’s not confusing enough, if the team wants to ensure the compiler is correct, they’ll 
hire

[build] a verification engineer to 

[build] build a 

[build] formal verification model, which

[build] models the hardware and

[build] verifies that the compiler is correct. Similarly to the compiler, the design of the verification model is informed by

[build] communications with the hardware designer,

[build] the hardware design itself,




[build] the documentation, and

[build] the verification engineer’s own ideas about how the hardware works.

[build] If this is looking a little complicated, well, I agree!

But the process of building a compiler is more than just confusing; it also

[build] requires significant developer effort, 
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gcc: 1000s of contributors over 35+ years

Yosys: 200+ contributors over 10+ years


TVM: 800+ contributors over 7 years

Which is clear once we see the sheer number of individual contributors and time that have gone into major open source compilers like gcc, the hardware synthesis tool 
Yosys, and the deep learning compiler TVM.
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Furthermore, building a compiler is a

[build] bug-prone process. In fact,
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You can build a strong research career centered on finding and fixing bugs in these large, open-source compilers.
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(Csmith)

(Verismith)

Finds bugs 
in gcc

Finds bugs 
in Yosys

Finds bugs 
in TVM

(et al.)
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And to make matters worse, these costs are multiplicative. That is, 
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…for each new piece of hardware,

[build] the entire process needs to be repeated to build a new compiler. Though there exists compiler frameworks such as LLVM and MLIR which lessen the burden on 
compiler engineers, the process still requires significant effort and expertise.
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Why are compilers hard to build?

So we asked the question …


What we’ve seen is that 

[build] …

And, importantly,

[build] …


A natural question after all of this is

[build] …

It might sound optimistic given how much effort it is to build a compiler, but let’s at least entertain the possibility.




Building a compiler requires significant 
engineering effort and induces numerous bugs.
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hardware design.

What if compilers were synthesized?

(i.e., automatically generated?)
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What if compilers were synthesized?

In the ideal case, our 

[build] hardware designer still builds their hardware design. But now, that design is read by

[build] a compiler generator, which 

[build] generates a compiler directly from their hardware implementation.

Automating compiler construction would save an immense amount of

[build] engineering effort and time.

In addition, depending on how the compiler generator is built, the generator could 

[build] verify the compiler as it’s being generated, producing 

[build] a bug-free compiler, saving verification time and effort as well.



Hardware 
Design

builds

Why are compilers hard to build?

What if compilers were synthesized?



Hardware 
Design

builds read by

Compiler 
Generator

Why are compilers hard to build?

What if compilers were synthesized?



Hardware 
Design

builds

Compiler

onto

read by

Compiler 
Generator

Programs
compiled  

by 

generates

Why are compilers hard to build?

What if compilers were synthesized?



Hardware 
Design

builds

Compiler

onto

read by

Compiler 
Generator

Programs
compiled  

by 

generates

Why are compilers hard to build?

What if compilers were synthesized?



Hardware 
Design

builds

Compiler

onto

read by

Compiler 
Generator

Programs
compiled  

by 

generates

verifies

Why are compilers hard to build?

What if compilers were synthesized?



Hardware 
Design

builds

Compiler

onto

read by

Compiler 
Generator

Programs
compiled  

by 

generates

verifies

Why are compilers hard to build?

What if compilers were synthesized?



What if compilers were synthesized?

b

o

Why are compilers hard to build?

But best of all, this approach can scale

[build] as every new hardware design can reuse 

[build] the same compiler generator, removing that multiplicative factor on effort and bugs that exists today.

In this ideal world,

[build] there is no hardware lottery, at least not because of compilers.
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What if compilers were synthesized?

So we see that

[build] …

[build] …



Automatically generating compilers can reduce 
engineering effort and eliminate bugs.

Why are compilers hard to build?

What if compilers were synthesized?



Automatically generating compilers can reduce 
engineering effort and eliminate bugs.

Furthermore, the approach scales with new 
hardware designs, thus fighting against the 

hardware lottery!

Why are compilers hard to build?

What if compilers were synthesized?



With that, I will now introduce the thesis statement of this talk, in which I claim

[build] …



Compilers should be generated from formal 
models of hardware. 



Compilers should be generated from formal 
models of hardware. 

With the growing diversity of hardware and the 
rapid improvement of automated reasoning, 

now is the time to make this a reality.
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Here’s our roadmap for the rest of the talk.
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Let’s talk about why now is the time to do this research.
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We claim that, with the growing diversity of hardware and the rapid improvement of automated reasoning, now is the time to make automatic generation of compilers a 
reality.
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With the growing diversity of hardware and the 
rapid improvement of automated reasoning, 

now is the time to make this a reality.

Generating Compilers Why Now? Case Study: Lakeroad Call to Action

First, let’s talk about what we mean by the growing diversity of hardware.
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As soon as I mention the diversity of hardware, I’m sure that the first thing that pops into peoples’ minds is hardware for machine learning, such as 

[build] GPUs and

[build] custom machine learning ASICs.

Yet even within

[build] processors like Apple’s A16, we’re seeing the addition of specialized accelerators like GPUs and Neural Engines.

Consider also platforms like 

[build] Xilinx’s Zynq chip, which includes both an ARM CPU and a reconfigurable FPGA, making quite an interesting target for compilers.

Lastly, far from the realm of silicon-based computing, people have begun computing using things like

[build] DNA strand displacement or

[build] metamaterials.

Though these are far from what we would normally consider “hardware”, they require compilers nonetheless!

Given the dizzying array of hardware available today, it’s clear that 

[build] hardware is growing more diverse, and that compilers for new hardware are desperately needed.

This diversity can be intimidating:

[build] how could we possibly generate compilers for all of this hardware?

But the explosion of new hardware platforms actually works in our favor,

[build] because as hardware diversifies, it gets more specialized, and thus, potentially easier to target with automated methods.



Generating Compilers Why Now? Case Study: Lakeroad Call to Action

NVIDIA Tensor Cores



Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Google TPU

AWS InferentiaNVIDIA Tensor Cores



Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Google TPU

AWS InferentiaNVIDIA Tensor Cores Apple A16



Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Google TPU

AWS InferentiaNVIDIA Tensor Cores Apple A16

Xilinx Zynq



Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Gerasimova et al. Connectable DNA Logic Gates: OR and XOR Logics.

Google TPU

AWS InferentiaNVIDIA Tensor Cores Apple A16

Xilinx Zynq



Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Parsa et al. Universal Mechanical Polycomputation in Granular Matter.

Gerasimova et al. Connectable DNA Logic Gates: OR and XOR Logics.

Google TPU

AWS InferentiaNVIDIA Tensor Cores Apple A16

Xilinx Zynq



Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Parsa et al. Universal Mechanical Polycomputation in Granular Matter.

Gerasimova et al. Connectable DNA Logic Gates: OR and XOR Logics.

Google TPU

AWS InferentiaNVIDIA Tensor Cores Apple A16

Xilinx Zynq
Hardware is growing more diverse; more compilers are desperately needed!



Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Parsa et al. Universal Mechanical Polycomputation in Granular Matter.

Gerasimova et al. Connectable DNA Logic Gates: OR and XOR Logics.

Google TPU

AWS InferentiaNVIDIA Tensor Cores Apple A16

Xilinx Zynq
Hardware is growing more diverse; more compilers are desperately needed!

How could we possibly support all of this hardware?



Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Parsa et al. Universal Mechanical Polycomputation in Granular Matter.

Gerasimova et al. Connectable DNA Logic Gates: OR and XOR Logics.

Google TPU

AWS InferentiaNVIDIA Tensor Cores Apple A16

Xilinx Zynq
Hardware is growing more diverse; more compilers are desperately needed!

How could we possibly support all of this hardware?

As as hardware diversifies, it gets more specialized, and thus easier to target!
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Previous work on automatically generating compilers largely focuses on

[build] processors.

Generating compilers for processors is

[build] quite a difficult task, as processors are general purpose, and compilers for general purpose processors must handle all of their capabilities.
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Generating compilers for general-purpose hardware is difficult.
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On the other hand, all of the new hardware we’re talking about is special purpose,


[build] which makes the task of reasoning about hardware’s behavior much more feasible for automated methods.


But not only is our hardware more amenable to automated reasoning; our tools for automated reasoning are now powerful enough to take on the task of automated 
compiler generation.
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Specialized hardware is easier to target with automated reasoning tools!
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Consider, for example,

[build] SAT and SMT solvers, whose performance have been 

[build] steadily increasing,


Or the relatively new technique of 

[build] equality saturation, which has already shown great promise for compiler construction,


And of course it wouldn’t be a talk in 2023 if I didn’t mention

[build] large language models, which are powerful tools for generating hardware code, among other tasks.


Given that this is only a small selection of the automated reasoning tools available, it’s clear that

[build] … 
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Automated reasoning tools are ready for the task of compiler generation. 



Compilers should be generated from formal 
models of hardware. 


With the growing diversity of hardware and the 
rapid improvement of automated reasoning, 

now is the time to make this a reality.

Generating Compilers Why Now? Case Study: Lakeroad Call to Action

So, why is now the time to make the automatic generation of compilers a reality? Well,

[build] …

Furthermore,

[build] …

Finally,

[build] …
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Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Hardware is diversifying, and we need new compilers.
Modern targets are more amenable to automated methods.

Automated reasoning tools are ready for the task of compiler generation.
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Generating Compilers Why Now? Case Study: Lakeroad Call to Action

…let’s talk about a concrete example of generating a compiler from hardware models, in a project we call Lakeroad.
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now is the time to make this a reality.

Generating Compilers Why Now? Case Study: Lakeroad Call to Action

We keep talking about the growing diversity of hardware platforms. Now,

[build] let’s look at a concrete example: FPGAs.
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Let’s look at a concrete example: FPGAs. 
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FPGAs are reconfigurable devices that can be used to implement hardware.


At a high level, though, you can think of an FPGA as being a bag filled with parts, or primitives.
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Primitives

In the past, FPGAs consisted only of 

[build] lookup tables, which are primitives that can be configured to implement logic gates.


Over the years, FPGAs have added specialized primitives such as

[build] carry chains to implement fast arithmetic.

One of the most interesting and impactful additions to FPGAs has been the inclusion of

[build] digital signal processors or DSPs, which are small, programmable embedded processors.
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Primitives



Are new primitives a challenge for FPGA compilers?

Compilers should be generated from formal 
models of hardware. 


With the growing diversity of hardware and the 
rapid improvement of automated reasoning, 

now is the time to make this a reality.

Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Even within FPGAs, hardware is diversifying.

So we can see that


[build] …

[build] Are new primitives a challenge for FPGA compilers, as our thesis would suggest?



Are new primitives a challenge for FPGA compilers?

Compilers should be generated from formal 
models of hardware. 


With the growing diversity of hardware and the 
rapid improvement of automated reasoning, 

now is the time to make this a reality.

Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Even within FPGAs, hardware is diversifying.

Are new primitives a challenge for FPGA compilers?
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Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Are new primitives a challenge for FPGA compilers?

To test this, we will attempt to compile a simple hardware design onto a Xilinx FPGA’s DSP.


In our case, our simple design takes four inputs and computes this expression in three pipeline stages.



((d + a) * b) ^ c

Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Are new primitives a challenge for FPGA compilers?

The Xilinx DSP documentation claims that this expression is supported on the DSP. But when we attempt to compile our design using the state of the art compiler for 
Xilinx FPGAs, we see a surprising result.
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Are new primitives a challenge for FPGA compilers?

We see that the design is in fact compiled onto DSPs; but instead of  
[build] using a single DSP as expected, it uses two DSPs and ten look up tables.
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Are new primitives a challenge for FPGA compilers?

Should use only 
a single DSP!
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Are new primitives a challenge for FPGA compilers?

So, are new primitives…


From our brief experiment, it seems like the answer is

[build] yes!

[build] But this is unsurprising…



On brief inspection, yes!
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Are new primitives a challenge for FPGA compilers?



On brief inspection, yes!

But this is unsurprising—DSPs are 
complicated.

Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Are new primitives a challenge for FPGA compilers?



Generating Compilers Why Now? Case Study: Lakeroad Call to Action

The manual for our Xilinx DSP alone is 

[build] over 75 pages long.
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Generating Compilers Why Now? Case Study: Lakeroad Call to Action

DSP manual is over 75 
pages long
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module DSP48E2 #(

  parameter integer ACASCREG = 1,

  parameter integer ADREG = 1,

  parameter integer ALUMODEREG = 1,

  parameter AMULTSEL = "A",

  parameter integer AREG = 1,

  parameter AUTORESET_PATDET = "NO_RESET",

  parameter AUTORESET_PRIORITY = "RESET",

  parameter A_INPUT = "DIRECT",

  ...

)(

  output [29:0] ACOUT,

  output [17:0] BCOUT,

  output CARRYCASCOUT,

  ...


  input [29:0] A,

  input [29:0] ACIN,

  input [3:0] ALUMODE,

  input [17:0] B,

  input [17:0] BCIN,

  input [47:0] C,

  ...

);


Furthermore, instantiating a DSP requires

[build] setting over 100 ports and parameters, while

[build] obeying strict requirements on port and parameter values, described throughout the 75 page manual.


With all of these complex interdependencies on what values are legal for which parameters based on the values of other parameters, 

[build] configuring a DSP is starting to sound a lot like writing a program. 
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module DSP48E2 #(

  parameter integer ACASCREG = 1,

  parameter integer ADREG = 1,

  parameter integer ALUMODEREG = 1,

  parameter AMULTSEL = "A",

  parameter integer AREG = 1,

  parameter AUTORESET_PATDET = "NO_RESET",

  parameter AUTORESET_PRIORITY = "RESET",

  parameter A_INPUT = "DIRECT",

  ...

)(

  output [29:0] ACOUT,

  output [17:0] BCOUT,

  output CARRYCASCOUT,

  ...


  input [29:0] A,

  input [29:0] ACIN,

  input [3:0] ALUMODE,

  input [17:0] B,

  input [17:0] BCIN,

  input [47:0] C,

  ...

);


Configuring the DSP 
requires setting 100+ 
ports and parameters
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module DSP48E2 #(

  parameter integer ACASCREG = 1,

  parameter integer ADREG = 1,

  parameter integer ALUMODEREG = 1,

  parameter AMULTSEL = "A",

  parameter integer AREG = 1,

  parameter AUTORESET_PATDET = "NO_RESET",

  parameter AUTORESET_PRIORITY = "RESET",

  parameter A_INPUT = "DIRECT",

  ...

)(

  output [29:0] ACOUT,

  output [17:0] BCOUT,

  output CARRYCASCOUT,

  ...


  input [29:0] A,

  input [29:0] ACIN,

  input [3:0] ALUMODE,

  input [17:0] B,

  input [17:0] BCIN,

  input [47:0] C,

  ...

);


Configuring the DSP 
requires setting 100+ 
ports and parameters

Configuring a DSP sounds a lot like writing a program!
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module DSP48E2 #(

  parameter integer ACASCREG = 1,

  parameter integer ADREG = 1,

  parameter integer ALUMODEREG = 1,

  parameter AMULTSEL = "A",

  parameter integer AREG = 1,

  parameter AUTORESET_PATDET = "NO_RESET",

  parameter AUTORESET_PRIORITY = "RESET",

  parameter A_INPUT = "DIRECT",

  ...

)(

  output [29:0] ACOUT,

  output [17:0] BCOUT,

  output CARRYCASCOUT,

  ...


  input [29:0] A,

  input [29:0] ACIN,

  input [3:0] ALUMODE,

  input [17:0] B,

  input [17:0] BCIN,

  input [47:0] C,

  ...

);


Configuring the DSP 
requires setting 100+ 
ports and parameters

Insight #1: configuring DSPs and other complex 
primitives is similar to writing a program…

Our first insight is that…


[build] so why not use program synthesis?


For those unfamiliar with program synthesis, I won’t go into too much detail, but just know that 

[build] solver aided program synthesis is the process of…
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module DSP48E2 #(

  parameter integer ACASCREG = 1,

  parameter integer ADREG = 1,

  parameter integer ALUMODEREG = 1,

  parameter AMULTSEL = "A",

  parameter integer AREG = 1,

  parameter AUTORESET_PATDET = "NO_RESET",

  parameter AUTORESET_PRIORITY = "RESET",

  parameter A_INPUT = "DIRECT",

  ...

)(

  output [29:0] ACOUT,

  output [17:0] BCOUT,

  output CARRYCASCOUT,

  ...


  input [29:0] A,

  input [29:0] ACIN,

  input [3:0] ALUMODE,

  input [17:0] B,

  input [17:0] BCIN,

  input [47:0] C,

  ...

);


Configuring the DSP 
requires setting 100+ 
ports and parameters

Insight #1: configuring DSPs and other complex 
primitives is similar to writing a program…

…so use program synthesis. 
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module DSP48E2 #(

  parameter integer ACASCREG = 1,

  parameter integer ADREG = 1,

  parameter integer ALUMODEREG = 1,

  parameter AMULTSEL = "A",

  parameter integer AREG = 1,

  parameter AUTORESET_PATDET = "NO_RESET",

  parameter AUTORESET_PRIORITY = "RESET",

  parameter A_INPUT = "DIRECT",

  ...

)(

  output [29:0] ACOUT,

  output [17:0] BCOUT,

  output CARRYCASCOUT,

  ...


  input [29:0] A,

  input [29:0] ACIN,

  input [3:0] ALUMODE,

  input [17:0] B,

  input [17:0] BCIN,

  input [47:0] C,

  ...

);


Configuring the DSP 
requires setting 100+ 
ports and parameters

Solver-aided program synthesis: using SMT/SAT/etc. 
to generate programs by solving a set of constraints.

Insight #1: configuring DSPs and other complex 
primitives is similar to writing a program…

…so use program synthesis. 
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module DSP48E2 #(

  parameter integer ACASCREG = 1,

  parameter integer ADREG = 1,

  parameter integer ALUMODEREG = 1,

  parameter AMULTSEL = "A",

  parameter integer AREG = 1,

  parameter AUTORESET_PATDET = "NO_RESET",

  parameter AUTORESET_PRIORITY = "RESET",

  parameter A_INPUT = "DIRECT",

  ...

)(

  output [29:0] ACOUT,

  output [17:0] BCOUT,

  output CARRYCASCOUT,

  ...


  input [29:0] A,

  input [29:0] ACIN,

  input [3:0] ALUMODE,

  input [17:0] B,

  input [17:0] BCIN,

  input [47:0] C,

  ...

);


Because configuring DSPs is so complicated, Xilinx provides…
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module DSP48E2 #(

  parameter integer ACASCREG = 1,

  parameter integer ADREG = 1,

  parameter integer ALUMODEREG = 1,

  parameter AMULTSEL = "A",

  parameter integer AREG = 1,

  parameter AUTORESET_PATDET = "NO_RESET",

  parameter AUTORESET_PRIORITY = "RESET",

  parameter A_INPUT = "DIRECT",

  ...

)(

  output [29:0] ACOUT,

  output [17:0] BCOUT,

  output CARRYCASCOUT,

  ...


  input [29:0] A,

  input [29:0] ACIN,

  input [3:0] ALUMODE,

  input [17:0] B,

  input [17:0] BCIN,

  input [47:0] C,

  ...

);


Configuring the DSP 
requires setting 100+ 
ports and parameters

///////////////////////////////////////////////////////////

//  Copyright (c) 1995/2017 Xilinx, Inc.

//  All Right Reserved.

///////////////////////////////////////////////////////////

//   ____  ____

//  /   /\/   /

// /___/  \  /     Vendor      : Xilinx

// \   \   \/      Version     : 2017.3

//  \   \          Description : Xilinx Unified Simulation 

//  /   /                        48-bit Multi-Functional 

// /___/   /\      Filename    : DSP48E2.v

// \   \  /  \

//  \___\/\___\

//

///////////////////////////////////////////////////////////


`timescale 1 ps / 1 ps


`celldefine


module DSP48E2 #(

`ifdef XIL_TIMING

  parameter LOC = "UNPLACED",

`endif

  parameter integer ACASCREG = 1,

  parameter integer ADREG = 1,

  parameter integer ALUMODEREG = 1,

  parameter AMULTSEL = "A",

  parameter integer AREG = 1,

  parameter AUTORESET_PATDET = "NO_RESET",

  parameter AUTORESET_PRIORITY = "RESET",

  parameter A_INPUT = "DIRECT",

  parameter integer BCASCREG = 1,

  parameter BMULTSEL = "B",

  ...

)(

  output [29:0] ACOUT,

  output [17:0] BCOUT,

  output CARRYCASCOUT,

  ...


  input [29:0] A,

  input [29:0] ACIN,

  input [3:0] ALUMODE,

  input [17:0] B,

  input [17:0] BCIN,

  input [47:0] C,

  ...


);

  

// define constants

  localparam MODULE_NAME = "DSP48E2";


// Parameter encodings and registers

  localparam AMULTSEL_A = 0;

  localparam AMULTSEL_AD = 1;

  localparam AUTORESET_PATDET_NO_RESET = 0;

  ...

`endif


  assign ACIN_in = ACIN;

  assign ALUMODE_in[0] = (ALUMODE[0] !== 1'bx) && (ALUMODE[0] ^ 
IS_ALUMODE_INVERTED_REG[0]); // rv 0

  assign ALUMODE_in[1] = (ALUMODE[1] !== 1'bx) && (ALUMODE[1] ^ 
IS_ALUMODE_INVERTED_REG[1]); // rv 0

  assign ALUMODE_in[2] = (ALUMODE[2] !== 1'bx) && (ALUMODE[2] ^ 
IS_ALUMODE_INVERTED_REG[2]); // rv 0

  assign ALUMODE_in[3] = (ALUMODE[3] !== 1'bx) && (ALUMODE[3] ^ 
IS_ALUMODE_INVERTED_REG[3]); // rv 0

  assign A_in[0] = (A[0] === 1'bx) || A[0]; // rv 1

  assign A_in[10] = (A[10] === 1'bx) || A[10]; // rv 1

  assign A_in[11] = (A[11] === 1'bx) || A[11]; // rv 1

  assign A_in[12] = (A[12] === 1'bx) || A[12]; // rv 1

  assign A_in[13] = (A[13] === 1'bx) || A[13]; // rv 1


  assign B_in[3] = (B[3] === 1'bx) || B[3]; // rv 1

  assign B_in[4] = (B[4] === 1'bx) || B[4]; // rv 1

  assign B_in[5] = (B[5] === 1'bx) || B[5]; // rv 1

  assign B_in[6] = (B[6] === 1'bx) || B[6]; // rv 1

  assign B_in[7] = (B[7] === 1'bx) || B[7]; // rv 1

  assign B_in[8] = (B[8] === 1'bx) || B[8]; // rv 1

  assign B_in[9] = (B[9] === 1'bx) || B[9]; // rv 1

  assign CARRYCASCIN_in = CARRYCASCIN;

  assign CARRYINSEL_in[0] = (CARRYINSEL[0] !== 1'bx) && 
CARRYINSEL[0]; // rv 0

  assign CARRYINSEL_in[1] = (CARRYINSEL[1] !== 1'bx) && 
CARRYINSEL[1]; // rv 0

  assign CARRYINSEL_in[2] = (CARRYINSEL[2] !== 1'bx) && 
CARRYINSEL[2]; // rv 0

  assign CARRYIN_in = (CARRYIN !== 1'bx) && (CARRYIN ^ 
IS_CARRYIN_INVERTED_REG); // rv 0

  assign CEA1_in = (CEA1 !== 1'bx) && CEA1; // rv 0

  assign CEA2_in = (CEA2 !== 1'bx) && CEA2; // rv 0

  assign CEAD_in = (CEAD !== 1'bx) && CEAD; // rv 0

  assign CEALUMODE_in = (CEALUMODE !== 1'bx) && CEALUMODE; // rv 
0

  assign CEB1_in = (CEB1 !== 1'bx) && CEB1; // rv 0

  assign CEB2_in = (CEB2 !== 1'bx) && CEB2; // rv 0


  assign CECARRYIN_in = (CECARRYIN !== 1'bx) && CECARRYIN; // rv 
0

  assign CECTRL_in = (CECTRL !== 1'bx) && CECTRL; // rv 0

  assign CEC_in = (CEC !== 1'bx) && CEC; // rv 0

  assign CED_in = (CED !== 1'bx) && CED; // rv 0

  assign CEINMODE_in = CEINMODE;

  assign CEM_in = (CEM !== 1'bx) && CEM; // rv 0

  assign CEP_in = (CEP !== 1'bx) && CEP; // rv 0

  assign CLK_in = (CLK !== 1'bx) && (CLK ^ IS_CLK_INVERTED_REG); 
// rv 0

  assign C_in[0] = (C[0] === 1'bx) || C[0]; // rv 1

  assign C_in[10] = (C[10] === 1'bx) || C[10]; // rv 1

  a

  assign D_in[1] = (D[1] !== 1'bx) && D[1]; // rv 0

  assign D_in[20] = (D[20] !== 1'bx) && D[20]; // rv 0

  assign D_in[21] = (D[21] !== 1'bx) && D[21]; // rv 0

  assign D_in[22] = (D[22] !== 1'bx) && D[22]; // rv 0

  assign D_in[23] = (D[23] !== 1'bx) && D[23]; // rv 0

  assign D_in[24] = (D[24] !== 1'bx) && D[24]; // rv 0

  assign D_in[25] = (D[25] !== 1'bx) && D[25]; // rv 0

  assign D_in[26] = (D[26] !== 1'bx) && D[26]; // rv 0

  assign D_in[2] = (D[2] !== 1'bx) && D[2]; // rv 0

  assign D_in[3] = (D[3] !== 1'bx) && D[3]; // rv 0

  assign D_in[4] = (D[4] !== 1'bx) && D[4]; // rv 0

  assign D_in[5] = (D[5] !== 1'bx) && D[5]; // rv 0

  assign D_in[6] = (D[6] !== 1'bx) && D[6]; // rv 0

  assign D_in[7] = (D[7] !== 1'bx) && D[7]; // rv 0

  assign D_in[8] = (D[8] !== 1'bx) && D[8]; // rv 0

  assign D_in[9] = (D[9] !== 1'bx) && D[9]; // rv 0

  assign INMODE_in[0] = (INMODE[0] !== 1'bx) && (INMODE[0] ^ 
IS_INMODE_INVERTED_REG[0]); // rv 0

  assign INMODE_in[1] = (INMODE[1] !== 1'bx) && (INMODE[1] ^ 
IS_INMODE_INVERTED_REG[1]); // rv 0

  assign INMODE_in[2] = (INMODE[2] !== 1'bx) && (INMODE[2] ^ 
IS_INMODE_INVERTED_REG[2]); // rv 0

  assign INMODE_in[3] = (INMODE[3] !== 1'bx) && (INMODE[3] ^ 
IS_INMODE_INVERTED_REG[3]); // rv 0

  assign INMODE_in[4] = (INMODE[4] !== 1'bx) && (INMODE[4] ^ 
IS_INMODE_INVERTED_REG[4]); // rv 0

  assign MULTSIGNIN_in = MULTSIGNIN;

  assign OPMODE_in[0] = (OPMODE[0] !== 1'bx) && (OPMODE[0] ^ 
IS_OPMODE_INVERTED_REG[0]); // rv 0

  assign OPMODE_in[1] = (OPMODE[1] !== 1'bx) && (OPMODE[1] ^ 
IS_OPMODE_INVERTED_REG[1]); // rv 0

  assign OPMODE_in[2] = (OPMODE[2] !== 1'bx) && (OPMODE[2] ^ 
IS_OPMODE_INVERTED_REG[2]); // rv 0

  assign OPMODE_in[3] = (OPMODE[3] !== 1'bx) && (OPMODE[3] ^ 
IS_OPMODE_INVERTED_REG[3]); // rv 0


...


DSP48E2.v

a 1500 line simulation model of the DSP, which hardware designers use to validate their designs. 

But this is useful to us as well, because

[build] …
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module DSP48E2 #(

  parameter integer ACASCREG = 1,

  parameter integer ADREG = 1,

  parameter integer ALUMODEREG = 1,

  parameter AMULTSEL = "A",

  parameter integer AREG = 1,

  parameter AUTORESET_PATDET = "NO_RESET",

  parameter AUTORESET_PRIORITY = "RESET",

  parameter A_INPUT = "DIRECT",

  ...

)(

  output [29:0] ACOUT,

  output [17:0] BCOUT,

  output CARRYCASCOUT,

  ...


  input [29:0] A,

  input [29:0] ACIN,

  input [3:0] ALUMODE,

  input [17:0] B,

  input [17:0] BCIN,

  input [47:0] C,

  ...

);


Configuring the DSP 
requires setting 100+ 
ports and parameters

///////////////////////////////////////////////////////////

//  Copyright (c) 1995/2017 Xilinx, Inc.

//  All Right Reserved.

///////////////////////////////////////////////////////////

//   ____  ____

//  /   /\/   /

// /___/  \  /     Vendor      : Xilinx

// \   \   \/      Version     : 2017.3

//  \   \          Description : Xilinx Unified Simulation 

//  /   /                        48-bit Multi-Functional 

// /___/   /\      Filename    : DSP48E2.v

// \   \  /  \

//  \___\/\___\

//

///////////////////////////////////////////////////////////


`timescale 1 ps / 1 ps


`celldefine


module DSP48E2 #(

`ifdef XIL_TIMING

  parameter LOC = "UNPLACED",

`endif

  parameter integer ACASCREG = 1,

  parameter integer ADREG = 1,

  parameter integer ALUMODEREG = 1,

  parameter AMULTSEL = "A",

  parameter integer AREG = 1,

  parameter AUTORESET_PATDET = "NO_RESET",

  parameter AUTORESET_PRIORITY = "RESET",

  parameter A_INPUT = "DIRECT",

  parameter integer BCASCREG = 1,

  parameter BMULTSEL = "B",

  ...

)(

  output [29:0] ACOUT,

  output [17:0] BCOUT,

  output CARRYCASCOUT,

  ...


  input [29:0] A,

  input [29:0] ACIN,

  input [3:0] ALUMODE,

  input [17:0] B,

  input [17:0] BCIN,

  input [47:0] C,

  ...


);

  

// define constants

  localparam MODULE_NAME = "DSP48E2";


// Parameter encodings and registers

  localparam AMULTSEL_A = 0;

  localparam AMULTSEL_AD = 1;

  localparam AUTORESET_PATDET_NO_RESET = 0;

  ...

`endif


  assign ACIN_in = ACIN;

  assign ALUMODE_in[0] = (ALUMODE[0] !== 1'bx) && (ALUMODE[0] ^ 
IS_ALUMODE_INVERTED_REG[0]); // rv 0

  assign ALUMODE_in[1] = (ALUMODE[1] !== 1'bx) && (ALUMODE[1] ^ 
IS_ALUMODE_INVERTED_REG[1]); // rv 0

  assign ALUMODE_in[2] = (ALUMODE[2] !== 1'bx) && (ALUMODE[2] ^ 
IS_ALUMODE_INVERTED_REG[2]); // rv 0

  assign ALUMODE_in[3] = (ALUMODE[3] !== 1'bx) && (ALUMODE[3] ^ 
IS_ALUMODE_INVERTED_REG[3]); // rv 0

  assign A_in[0] = (A[0] === 1'bx) || A[0]; // rv 1

  assign A_in[10] = (A[10] === 1'bx) || A[10]; // rv 1

  assign A_in[11] = (A[11] === 1'bx) || A[11]; // rv 1

  assign A_in[12] = (A[12] === 1'bx) || A[12]; // rv 1

  assign A_in[13] = (A[13] === 1'bx) || A[13]; // rv 1


  assign B_in[3] = (B[3] === 1'bx) || B[3]; // rv 1

  assign B_in[4] = (B[4] === 1'bx) || B[4]; // rv 1

  assign B_in[5] = (B[5] === 1'bx) || B[5]; // rv 1

  assign B_in[6] = (B[6] === 1'bx) || B[6]; // rv 1

  assign B_in[7] = (B[7] === 1'bx) || B[7]; // rv 1

  assign B_in[8] = (B[8] === 1'bx) || B[8]; // rv 1

  assign B_in[9] = (B[9] === 1'bx) || B[9]; // rv 1

  assign CARRYCASCIN_in = CARRYCASCIN;

  assign CARRYINSEL_in[0] = (CARRYINSEL[0] !== 1'bx) && 
CARRYINSEL[0]; // rv 0

  assign CARRYINSEL_in[1] = (CARRYINSEL[1] !== 1'bx) && 
CARRYINSEL[1]; // rv 0

  assign CARRYINSEL_in[2] = (CARRYINSEL[2] !== 1'bx) && 
CARRYINSEL[2]; // rv 0

  assign CARRYIN_in = (CARRYIN !== 1'bx) && (CARRYIN ^ 
IS_CARRYIN_INVERTED_REG); // rv 0

  assign CEA1_in = (CEA1 !== 1'bx) && CEA1; // rv 0

  assign CEA2_in = (CEA2 !== 1'bx) && CEA2; // rv 0

  assign CEAD_in = (CEAD !== 1'bx) && CEAD; // rv 0

  assign CEALUMODE_in = (CEALUMODE !== 1'bx) && CEALUMODE; // rv 
0

  assign CEB1_in = (CEB1 !== 1'bx) && CEB1; // rv 0

  assign CEB2_in = (CEB2 !== 1'bx) && CEB2; // rv 0


  assign CECARRYIN_in = (CECARRYIN !== 1'bx) && CECARRYIN; // rv 
0

  assign CECTRL_in = (CECTRL !== 1'bx) && CECTRL; // rv 0

  assign CEC_in = (CEC !== 1'bx) && CEC; // rv 0

  assign CED_in = (CED !== 1'bx) && CED; // rv 0

  assign CEINMODE_in = CEINMODE;

  assign CEM_in = (CEM !== 1'bx) && CEM; // rv 0

  assign CEP_in = (CEP !== 1'bx) && CEP; // rv 0

  assign CLK_in = (CLK !== 1'bx) && (CLK ^ IS_CLK_INVERTED_REG); 
// rv 0

  assign C_in[0] = (C[0] === 1'bx) || C[0]; // rv 1

  assign C_in[10] = (C[10] === 1'bx) || C[10]; // rv 1

  a

  assign D_in[1] = (D[1] !== 1'bx) && D[1]; // rv 0

  assign D_in[20] = (D[20] !== 1'bx) && D[20]; // rv 0

  assign D_in[21] = (D[21] !== 1'bx) && D[21]; // rv 0

  assign D_in[22] = (D[22] !== 1'bx) && D[22]; // rv 0

  assign D_in[23] = (D[23] !== 1'bx) && D[23]; // rv 0

  assign D_in[24] = (D[24] !== 1'bx) && D[24]; // rv 0

  assign D_in[25] = (D[25] !== 1'bx) && D[25]; // rv 0

  assign D_in[26] = (D[26] !== 1'bx) && D[26]; // rv 0

  assign D_in[2] = (D[2] !== 1'bx) && D[2]; // rv 0

  assign D_in[3] = (D[3] !== 1'bx) && D[3]; // rv 0

  assign D_in[4] = (D[4] !== 1'bx) && D[4]; // rv 0

  assign D_in[5] = (D[5] !== 1'bx) && D[5]; // rv 0

  assign D_in[6] = (D[6] !== 1'bx) && D[6]; // rv 0

  assign D_in[7] = (D[7] !== 1'bx) && D[7]; // rv 0

  assign D_in[8] = (D[8] !== 1'bx) && D[8]; // rv 0

  assign D_in[9] = (D[9] !== 1'bx) && D[9]; // rv 0

  assign INMODE_in[0] = (INMODE[0] !== 1'bx) && (INMODE[0] ^ 
IS_INMODE_INVERTED_REG[0]); // rv 0

  assign INMODE_in[1] = (INMODE[1] !== 1'bx) && (INMODE[1] ^ 
IS_INMODE_INVERTED_REG[1]); // rv 0

  assign INMODE_in[2] = (INMODE[2] !== 1'bx) && (INMODE[2] ^ 
IS_INMODE_INVERTED_REG[2]); // rv 0

  assign INMODE_in[3] = (INMODE[3] !== 1'bx) && (INMODE[3] ^ 
IS_INMODE_INVERTED_REG[3]); // rv 0

  assign INMODE_in[4] = (INMODE[4] !== 1'bx) && (INMODE[4] ^ 
IS_INMODE_INVERTED_REG[4]); // rv 0

  assign MULTSIGNIN_in = MULTSIGNIN;

  assign OPMODE_in[0] = (OPMODE[0] !== 1'bx) && (OPMODE[0] ^ 
IS_OPMODE_INVERTED_REG[0]); // rv 0

  assign OPMODE_in[1] = (OPMODE[1] !== 1'bx) && (OPMODE[1] ^ 
IS_OPMODE_INVERTED_REG[1]); // rv 0

  assign OPMODE_in[2] = (OPMODE[2] !== 1'bx) && (OPMODE[2] ^ 
IS_OPMODE_INVERTED_REG[2]); // rv 0

  assign OPMODE_in[3] = (OPMODE[3] !== 1'bx) && (OPMODE[3] ^ 
IS_OPMODE_INVERTED_REG[3]); // rv 0


...


DSP48E2.v

Simulation models provide the formal semantics of behaviors and constraints 
necessary for automated reasoning!
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module DSP48E2 #(

  parameter integer ACASCREG = 1,

  parameter integer ADREG = 1,

  parameter integer ALUMODEREG = 1,

  parameter AMULTSEL = "A",

  parameter integer AREG = 1,

  parameter AUTORESET_PATDET = "NO_RESET",

  parameter AUTORESET_PRIORITY = "RESET",

  parameter A_INPUT = "DIRECT",

  ...

)(

  output [29:0] ACOUT,

  output [17:0] BCOUT,

  output CARRYCASCOUT,

  ...


  input [29:0] A,

  input [29:0] ACIN,

  input [3:0] ALUMODE,

  input [17:0] B,

  input [17:0] BCIN,

  input [47:0] C,

  ...

);


Configuring the DSP 
requires setting 100+ 
ports and parameters

Insight #1: configuring DSPs and other 
complex primitives is similar to writing a 

program, so use program synthesis. 

Insight #2: we can extract the semantics 

necessary for automated reasoning 
directly from simulation models.

This leads us to our second insight, which is that we can …



Lakeroad: a hardware synthesis tool utilizing 
program synthesis and semantics extracted 
from simulation models to target complex, 

programmable FPGA primitives.

Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Using these two insights, we build Lakeroad, which is…



Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Initial results with Lakeroad suggest that Lakeroad is able to find mappings that other tools do not, successfully mapping designs onto 

[build] a single DSP when other tools 

[build] fail to do so. 
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Generating Compilers Why Now? Case Study: Lakeroad Call to Action

How does Lakeroad support the thesis of this talk?

We claim that

[build] …

Lakeroad exemplifies this directly, by 

[build] automatically enabling compilation…


Furthermore, we claim that

[build] …

Which Lakeroad demonstrates by showing that 

[build] automated methods are…



Compilers should be generated from formal 
models of hardware. 

Generating Compilers Why Now? Case Study: Lakeroad Call to Action



Compilers should be generated from formal 
models of hardware. 

Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Lakeroad automatically enables compilation to FPGA 
primitives, given the simulation models of those primitives.



Compilers should be generated from formal 
models of hardware. 

With the growing diversity of hardware and the 
rapid improvement of automated reasoning, 

now is the time to make this a reality.
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Lakeroad automatically enables compilation to FPGA 
primitives, given the simulation models of those primitives.



Compilers should be generated from formal 
models of hardware. 

With the growing diversity of hardware and the 
rapid improvement of automated reasoning, 

now is the time to make this a reality.

Generating Compilers Why Now? Case Study: Lakeroad Call to Action

Lakeroad demonstrates that automated methods are now powerful 
enough address gaps in existing state-of-the-art tools.

Lakeroad automatically enables compilation to FPGA 
primitives, given the simulation models of those primitives.
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Now finally,
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Let’s conclude with a call to action.



2020

In conclusion, I want to end where we began.

I believe the hardware lottery is a direct challenge to our community.


If there’s one message I want to leave you with today, it’s this:

[build] It’s on on all of us in this room to fight against the hardware lottery, by making sure that practitioners in all fields have the hardware and compilers they need to 
advance their research.


What I’ve proposed today—automatically generating compilers from formal models of hardware—is just one possible solution. Whether or not you agree with the 
solution, I hope you’ll agree with the larger goal of ending the hardware lottery once and for all.



2020

It’s on on all of us to fight against the hardware lottery, by making 
sure that practitioners in all fields have the hardware and compilers 

they need to advance their research.



Thank you!

Thank you, everybody!


